In this study, the mechanical and tribological performances of pure nylon 6 polymer and nylon 6 polymer-based composites filled with graphite at different ratios were investigated. Composites filled with graphite filler at different ratios of 5-10-15 wt% were produced. Granules were produced by compound production method, while mechanical and tribological test specimens were moulded by injection moulding method. The mechanical properties of the composites such as hardness, tensile strength, % elongation at break and modulus of elasticity and tribological properties such as coefficient of friction and wear rate were investigated. Tribological tests were carried out at a sliding speed of 0,5 m/s and a load of 30 N. Tribological properties were carried out in the case of nylon 6/nylon 6 pair, nylon 6-5Gr/ nylon 6-5Gr, nylon 6-10Gr/ nylon 6-10Gr and nylon 6-15Gr/ nylon 6-15Gr composite pairs working on each other. While increases in tensile modulus and hardness were observed, tensile strength and % elongation at break values decreased. The highest tensile modulus of 4607 MPa and the highest hardness of 77 Shore D were obtained in nylon 6 composite with 15wt.% graphite filler. The lowest tensile strength and % elongation at break values, the lowest wear rate and the highest coefficient of friction were obtained in nylon 6 polymer composite with 15% graphite filler. The friction coefficient of the nylon 6-15Gr/nylon 6-15Gr composite increased by approximately 63.8% compared to the nylon 6/nylon 6. Compared to Nylon6/nylon6, the wear rates of nylon6-5Gr/nylon6-5Gr composite, nylon6-10Gr/nylon6-10Gr composite and Nylon6-15Gr/nylon6-15Gr composite were reduced by 30.8%, 51.7% and 56.3%, respectively.
Abenojar, J., Martinez, M.A., Velasco, F., Pascual-Sanchez, V., & Martin-Martinez, J.M. (2009). Effect of boron carbide filler on the curing and mechanical properties of an epoxy resin. The Journal of Adhesion, 85(4-5), 216–238. https://doi.org/10.1080/00218460902881782
Alajmi, M., Alrashdan, K.R., Alsaeed, T., & Shalwan, A. (2020). Tribological characteristics of graphite epoxy composites using adhesive wear experiments. Journal of Materials Research and Technology, 9(6), 13671–13681. https://doi.org/10.1016/j.jmrt.2020.09.106
Ben Difallah, B., Kharrat, M., Dammak, M., & Monteil, G. (2014) Improvement in the tribological performance of polycarbonate via the ıncorporation of molybdenum di-sulfide particles. Tribology Transactions, 57(5), 806-813. https://doi.org/10.1080/10402004.2014.913751
Ben Difallah, B., Kharrat, M., Dammak, M., & Monteil, G. (2012). Mechanical and tribological response of ABS polymer matrix filled with graphite powder. Materials and Design, 34, 782–787. https://doi.org/10.1016/j.matdes.2011.07.001
Chen, Z., Yan, H., Liu, T., Niu, S., & Ma, J. (2015). Improved mechanical and tribological properties of bismaleimide composites by surface-functionalized reduced graphene oxide and MoS2 coated with cyclo-triphosphazene polymer. RSC Advances, 5, 97883–97890. https://doi.org/10.1039/C5RA19101G
Dajana, J., Simon, K., Mitjan, K., Janez, S., Blaz, N., & Miroslav, H. (2022). Effect of expanded graphite on mechanical and tribological properties of Polyamide 6/Glass fibre composites. Advances in Polymer Technology, 9974889. https://doi.org/10.1155/2022/9974889
Diez-Pascual, A.M., Naffakh, M., Marco, C., Ellis, G., & Gomez-Fatou, M.A. (2012). High performance nano-composites based on poly-ether-ketones. Progress in Materials Science, 57(7), 1106-1190. https://doi.org/10.1016/j.pmatsci.2012.03.003
Gheisari, R., & Polycarpou, A.A. (2019). Tribological performance of graphite-filled polyimide and PTFE composites in oil-lubricated three-body abrasive conditions. Wear, 436–437, 203044. https://doi.org/10.1016/j.wear.2019.203044
Hussam, M., Andrey, A.S., & Victor, V.T. (2022). Effect of graphite filler type on the thermal conductivity and mechanical behavior of Polysulfone-based composites. Polymers (Basel), 14(3), 399. https://doi.org/10.3390/polym14030399
Jitendra, N.P., Jayashree, B., & Raj, K.P. (2019). Optimization of graphite contents in PAEK composites for best combination of performance properties. Composites Part B, 174, 106951. https://doi.org/10.1016/j.compositesb.2019.106951
Ji-Zhao, L., Qiang, D., Gary C.P.T., & Chak-Yin, T. (2016). Tensile properties of graphene nano-platelets reinforced polypropylene composites. Composites Part B, 95, 166-171. https://doi.org/10.1016/j.compositesb.2016.04.011
Katiyar, J.K., Sujeet, K.S., & Arvind K. (2016). Effect of Graphite Concentration on the Tribological and Mechanical Properties of Filled SU-8 Polymer. Tribology Online, 11(2), 152-158. https://doi.org/10.2474/trol.11.152
Kumar, S.S., & Kanagaraj, G. (2016). Investigation on mechanical and tribological behaviours of PA6 and graphite-reinforced PA6 polymer composites. Arabian Journal for Science and Engineering, 41, 4347–4357. https://doi.org/10.1007/s13369-016-2126-2
Li, H., Yin, Z., Jiang, D., Jin, L., & Cui, Y. (2015). A study of the tribological behaviour of transfer films of PTFE composites formed under different loads, speeds and morphologies of the counterface. Wear, 328–329, 17–27. https://doi.org/10.1016/j.wear.2015.01.028
Matyas, A. (2018). Influence of graphite additives on mechanical, tribological, fire resistance and electrical properties in polyamide 6. Technical Gazette, 25(4), 1014-1019. htps://doi.org/10.17559/TV-20160702212234
Mohd. Abdul, R., Sathees K.S., Ch. Nithin, C., & Shaik, S. (2023) Investigation on tribological behaviour of graphite reinforced Nylon 6 polymer composites evaluated by Taguchi method. AIP Conference Proceedings, 2548 (1), 030006. https://doi.org/10.1063/5.0137683.
Ömer, Ş., Musa, Ş., & Menderes, K. (2020). Sürdürülebilir üretim için grafit takviyeli Polipropilen kompozit ürünlerin bazi termal ve mekanik özelliklerinin deneysel analizi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(1), 10-20. https://doi.org/10.35193/bseufbd.687111.
Piotr, R., Beate, K., & Petra, P. (2019). Characterization of highly filled PP/Graphite composites for adhesive joining in fuel cell applications. Polymers (Basel), 11(3), 462. https://doi.org/10.3390/polym11030462
Raffaele, G. (2016). Tribology of graphite-filled Polystyrene. Lubricants, 4(2), 20. https://doi.org/10.3390/lubricants4020020
Reddy, A.C. (2015). Characterization of mechanical and tribological behaviour of (Nylon 6 + Graphite + Teflon) nano particulate composite: Application perspective. International Journal of Scientific & Engineering Research, 6(4), 378-386.
Sudheer, M., Prabhu, R., Raju, K., & Bhat, T. (2014). Effect of filler content on the performance of epoxy/PTW composites. Advances in Materials Science and Engineering, 2014, 970468. https://doi.org/10.1155/2014/970468
Suresha, B., Chandramohan, G., Renukappa, N.M., & Siddaramaiah, H. (2007). Mechanical and tribological Properties of glass–epoxy composites with and without graphite particulate filler. Journal of Applied Polymer Science, 103, 2472-2480. https://doi.org/10.1002/app.25413
Taha, I., & Abdin, Y.F. (2011). Modeling of strength and stiffness of short randomly oriented glass fiber-polypropylene composites. Journal of Composite Materials, 45, 1805–1821. https://doi.org/10.1177/0021998310389089
Unal, H., Kadir E., & Abdullah, M. (2013). Mechanical, electrical and tribological properties of graphite filled polyamide-6 composite materials. Journal of Polymer Engineering, 33(4), 351–355. https://doi.org/10.1515/polyeng-2013-0043
Ünal, H., Yetgin, S.H., & Köse, S. (2023). Tribological performance of polyamide 6/wax blend for rolling bearing, bushing and gear applications. International Journal of Chemistry and Technology, 7 (1), 77-83. http://dx.doi.org/10.32571/ijct.1292871
Vikram, K., Bhaumik, S., & Pramanik, S. (2023). Effect of graphite on tribological and mechanical properties of PA6/5GF composites. Journal of Thermal Analysis and Calorimetry, 148, 3341–3355. https://doi.org/10.1007/s10973-022-11939-8
You, Y.L., Li, D. X., Deng, X., Li, W. J., & Xie, Y. (2013). Effect of solid lubricants on tribological behaviour of glass fiber reinforced polyamide 6. Polymer Composites, 34(11), 1783–1793. https://doi.org/10.1002/pc.22582
Zhou, S., Chiang, S., Xu, J., Du, H., Li, B., Xu, C., & Feiyu, K. (2012). Modeling the in-plane thermal conductivity of a graphite/polymer composite sheet with a very high content of natural flake graphite. Carbon, 50(14), 5052–5061. https://doi.org/10.1016/j.carbon.2012.06.045
KATI YAĞLAYICI OLARAK GRAFİT KATKILI NAYLON 6 KOMPOZİTLERİN MEKANİK VE TRİBOLOJİK PERFORMANSLARI
Bu çalışmada saf naylon 6 polimeri ile farklı oranlarda grafit (Gr) katkılı naylon 6 polimer esaslı kompozitlerin mekanik ve tribolojik performansları incelenmiştir. Ağırlıkça %5-10-15 gibi farklı oranlarda grafit katkılı kompozitler üretilmiştir. Granüller kompound üretim yöntemiyle üretilirken mekanik ve tribolojik test numuneleri enjeksiyonla kalıplama yöntemiyle basılmıştır. Üretilen kompozitlerin sertlik, çekme mukavemeti, kopmadaki % uzama ve elastiklik modülü gibi mekanik özellikleri ile sürtünme katsayısı ve aşınma oranı gibi tribolojik özellikleri incelenmiştir. Tribolojik deneyler, 0,5 m/s kayma hızında ve 30 N yükte gerçekleştirilmiştir. Tribolojik özellikler naylon 6/naylon 6 çifti, naylon 6-5Gr/naylon 6-5Gr, naylon 6-10Gr/naylon 6-10Gr ve naylon 6-15Gr/naylon 6-15Gr kompozit çiftlerinin birbiri üzerinde çalışması durumunda gerçekleştirilmiştir. Çekmedeki elastiklik modülü ve sertlikte artışlar gözlenirken çekme mukavemeti, kopmadaki % uzama değerlerinde azalma tespit edilmiştir. En yüksek elastiklik modülü 4607 MPa ve en yüksek sertlik 77 Shore D değeri ile %15 oranında grafit katı yağlayıcı katkı içeren Naylon 6 polimer kompozitinde elde edilmiştir. En düşük çekme mukavemeti ve kopmadaki % uzama değerleri ile en düşük aşınma oranı ve en yüksek sürtünme katsayısı %15 grafit katkılı naylon 6 polimer kompozitinde elde edilmiştir. Naylon 6-15Gr/naylon 6-15Gr kompozit çiftinin sürtünme katsayısı naylon 6/naylon 6 çiftine göre yaklaşık %63,8 oranında artmıştır. Nylon6/nylon6 ile karşılaştırıldığında, nylon6-5Gr/nylon6-5Gr kompozitin, nylon6-10Gr/nylon6-10Gr kompozitin ve Nylon6-15Gr/nylon6-15Gr kompozitin aşınma oranları sırasıyla %30,8, %51,7 ve %56,3 azalmıştır.
Abenojar, J., Martinez, M.A., Velasco, F., Pascual-Sanchez, V., & Martin-Martinez, J.M. (2009). Effect of boron carbide filler on the curing and mechanical properties of an epoxy resin. The Journal of Adhesion, 85(4-5), 216–238. https://doi.org/10.1080/00218460902881782
Alajmi, M., Alrashdan, K.R., Alsaeed, T., & Shalwan, A. (2020). Tribological characteristics of graphite epoxy composites using adhesive wear experiments. Journal of Materials Research and Technology, 9(6), 13671–13681. https://doi.org/10.1016/j.jmrt.2020.09.106
Ben Difallah, B., Kharrat, M., Dammak, M., & Monteil, G. (2014) Improvement in the tribological performance of polycarbonate via the ıncorporation of molybdenum di-sulfide particles. Tribology Transactions, 57(5), 806-813. https://doi.org/10.1080/10402004.2014.913751
Ben Difallah, B., Kharrat, M., Dammak, M., & Monteil, G. (2012). Mechanical and tribological response of ABS polymer matrix filled with graphite powder. Materials and Design, 34, 782–787. https://doi.org/10.1016/j.matdes.2011.07.001
Chen, Z., Yan, H., Liu, T., Niu, S., & Ma, J. (2015). Improved mechanical and tribological properties of bismaleimide composites by surface-functionalized reduced graphene oxide and MoS2 coated with cyclo-triphosphazene polymer. RSC Advances, 5, 97883–97890. https://doi.org/10.1039/C5RA19101G
Dajana, J., Simon, K., Mitjan, K., Janez, S., Blaz, N., & Miroslav, H. (2022). Effect of expanded graphite on mechanical and tribological properties of Polyamide 6/Glass fibre composites. Advances in Polymer Technology, 9974889. https://doi.org/10.1155/2022/9974889
Diez-Pascual, A.M., Naffakh, M., Marco, C., Ellis, G., & Gomez-Fatou, M.A. (2012). High performance nano-composites based on poly-ether-ketones. Progress in Materials Science, 57(7), 1106-1190. https://doi.org/10.1016/j.pmatsci.2012.03.003
Gheisari, R., & Polycarpou, A.A. (2019). Tribological performance of graphite-filled polyimide and PTFE composites in oil-lubricated three-body abrasive conditions. Wear, 436–437, 203044. https://doi.org/10.1016/j.wear.2019.203044
Hussam, M., Andrey, A.S., & Victor, V.T. (2022). Effect of graphite filler type on the thermal conductivity and mechanical behavior of Polysulfone-based composites. Polymers (Basel), 14(3), 399. https://doi.org/10.3390/polym14030399
Jitendra, N.P., Jayashree, B., & Raj, K.P. (2019). Optimization of graphite contents in PAEK composites for best combination of performance properties. Composites Part B, 174, 106951. https://doi.org/10.1016/j.compositesb.2019.106951
Ji-Zhao, L., Qiang, D., Gary C.P.T., & Chak-Yin, T. (2016). Tensile properties of graphene nano-platelets reinforced polypropylene composites. Composites Part B, 95, 166-171. https://doi.org/10.1016/j.compositesb.2016.04.011
Katiyar, J.K., Sujeet, K.S., & Arvind K. (2016). Effect of Graphite Concentration on the Tribological and Mechanical Properties of Filled SU-8 Polymer. Tribology Online, 11(2), 152-158. https://doi.org/10.2474/trol.11.152
Kumar, S.S., & Kanagaraj, G. (2016). Investigation on mechanical and tribological behaviours of PA6 and graphite-reinforced PA6 polymer composites. Arabian Journal for Science and Engineering, 41, 4347–4357. https://doi.org/10.1007/s13369-016-2126-2
Li, H., Yin, Z., Jiang, D., Jin, L., & Cui, Y. (2015). A study of the tribological behaviour of transfer films of PTFE composites formed under different loads, speeds and morphologies of the counterface. Wear, 328–329, 17–27. https://doi.org/10.1016/j.wear.2015.01.028
Matyas, A. (2018). Influence of graphite additives on mechanical, tribological, fire resistance and electrical properties in polyamide 6. Technical Gazette, 25(4), 1014-1019. htps://doi.org/10.17559/TV-20160702212234
Mohd. Abdul, R., Sathees K.S., Ch. Nithin, C., & Shaik, S. (2023) Investigation on tribological behaviour of graphite reinforced Nylon 6 polymer composites evaluated by Taguchi method. AIP Conference Proceedings, 2548 (1), 030006. https://doi.org/10.1063/5.0137683.
Ömer, Ş., Musa, Ş., & Menderes, K. (2020). Sürdürülebilir üretim için grafit takviyeli Polipropilen kompozit ürünlerin bazi termal ve mekanik özelliklerinin deneysel analizi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(1), 10-20. https://doi.org/10.35193/bseufbd.687111.
Piotr, R., Beate, K., & Petra, P. (2019). Characterization of highly filled PP/Graphite composites for adhesive joining in fuel cell applications. Polymers (Basel), 11(3), 462. https://doi.org/10.3390/polym11030462
Raffaele, G. (2016). Tribology of graphite-filled Polystyrene. Lubricants, 4(2), 20. https://doi.org/10.3390/lubricants4020020
Reddy, A.C. (2015). Characterization of mechanical and tribological behaviour of (Nylon 6 + Graphite + Teflon) nano particulate composite: Application perspective. International Journal of Scientific & Engineering Research, 6(4), 378-386.
Sudheer, M., Prabhu, R., Raju, K., & Bhat, T. (2014). Effect of filler content on the performance of epoxy/PTW composites. Advances in Materials Science and Engineering, 2014, 970468. https://doi.org/10.1155/2014/970468
Suresha, B., Chandramohan, G., Renukappa, N.M., & Siddaramaiah, H. (2007). Mechanical and tribological Properties of glass–epoxy composites with and without graphite particulate filler. Journal of Applied Polymer Science, 103, 2472-2480. https://doi.org/10.1002/app.25413
Taha, I., & Abdin, Y.F. (2011). Modeling of strength and stiffness of short randomly oriented glass fiber-polypropylene composites. Journal of Composite Materials, 45, 1805–1821. https://doi.org/10.1177/0021998310389089
Unal, H., Kadir E., & Abdullah, M. (2013). Mechanical, electrical and tribological properties of graphite filled polyamide-6 composite materials. Journal of Polymer Engineering, 33(4), 351–355. https://doi.org/10.1515/polyeng-2013-0043
Ünal, H., Yetgin, S.H., & Köse, S. (2023). Tribological performance of polyamide 6/wax blend for rolling bearing, bushing and gear applications. International Journal of Chemistry and Technology, 7 (1), 77-83. http://dx.doi.org/10.32571/ijct.1292871
Vikram, K., Bhaumik, S., & Pramanik, S. (2023). Effect of graphite on tribological and mechanical properties of PA6/5GF composites. Journal of Thermal Analysis and Calorimetry, 148, 3341–3355. https://doi.org/10.1007/s10973-022-11939-8
You, Y.L., Li, D. X., Deng, X., Li, W. J., & Xie, Y. (2013). Effect of solid lubricants on tribological behaviour of glass fiber reinforced polyamide 6. Polymer Composites, 34(11), 1783–1793. https://doi.org/10.1002/pc.22582
Zhou, S., Chiang, S., Xu, J., Du, H., Li, B., Xu, C., & Feiyu, K. (2012). Modeling the in-plane thermal conductivity of a graphite/polymer composite sheet with a very high content of natural flake graphite. Carbon, 50(14), 5052–5061. https://doi.org/10.1016/j.carbon.2012.06.045
Ünal, H., Yetgin, S. H., & Ünal, V. F. (2023). KATI YAĞLAYICI OLARAK GRAFİT KATKILI NAYLON 6 KOMPOZİTLERİN MEKANİK VE TRİBOLOJİK PERFORMANSLARI. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(4), 853-865. https://doi.org/10.17780/ksujes.1300407