Research Article
BibTex RIS Cite

KİLİN MUKAVEMETİ VE DONMA-ÇÖZÜLME SONRASI MUKAVEMETİ ÜZERİNDE BİYOPOLİMER VE LİF KATKISININ ORTAK ETKİSİNİN ARAŞTIRILMASI

Year 2023, , 951 - 961, 03.12.2023
https://doi.org/10.17780/ksujes.1328845

Abstract

Kil zeminler, suyla karşılaştıklarında hacimsel stabilitelerini kaybettikleri için problemli zeminler olarak bilinmektedir. Ayrıca donma-çözülme olayı bu zeminlerin mühendislik özelliklerini olumsuz yönde etkileyen önemli bir parametredir. Kil zeminlerin bu gibi durumlara karşı özelliklerini iyileştirmek amacıyla birçok iyileştirme yöntemi bulunmaktadır. Katkı malzemeleri ile zemin iyileştirme yaygın olarak kullanılan yöntemlerden birisidir. Katkılar arasında geleneksel olarak kullanılan çimento, kireç gibi kimyasal malzemeler yer alırken uçucu kül gibi atık malzemeler de kullanılmaktadır. Son yıllarda bu malzemelerin çevreye verdikleri zarar göz önüne alınarak araştırmacılar tarafından karbon salınımına neden olmayan malzeme arayışına gidilmiştir. Bu bağlamda çevre dostu, yeşil polimerler olarak tabir edilen biyopolimerler ile zemin iyileştirmesi yaygın olarak çalışılmaya başlanmıştır. Bunlara ilaveten lifler de zemin iyileştirmesinde alternatif olarak kullanılan malzemeler arasında yer almaktadır. Literatürde biyopolimer ve liflerin bir arada kullanılması ile zeminlerin iyileştirilmesi ise yeni bir konudur. Bu çalışma kapsamında bir biyopolimer olan keçiboynuzu gam ile sentetik bir lif olan polyester iplik farklı yüzdelerde kullanılarak kil bir zeminin mukavemet ve donma çözülme sonrası mukavemet davranışı araştırılmıştır. Çalışma sonucunda, biyopolimer ve lifin bir arada kullanılmasının kil zeminin serbest basınç ve donma çözülme sonrası mukavemetini yalnız lif ve yalnız biyopolimer içeren kile göre daha fazla iyileştirdiği görülmüştür.

References

  • Akbulut, R. K., & Zaimoğlu, A. Ş. (2019). Effect of aspect ratio on the freezing thawing of a CH clay. Selçuk Üniversitesi Mühendislik Bilim ve Teknik Dergisi, 7, 66-74. https://doi.org/10.15317/Scitech.2019.182
  • Ayeldeen, M. K., Negm, A. M., El Sawwaf, M. A. (2016). Evaluating the physical characteristics of biopolymer/soil mixtures. Arabian Journal of Geosciences, 9: 371. https://doi.org/10.1007/s12517-016-2366-1
  • Ayhan, A. (2011). Biyopolimer Katkıları İle Zeminlerin Mühendislik Özelliklerinin İyileştirilmesi. Yüksek Lisans Tezi. Celal Bayar Üniversitesi Fen Bilimleri Enstitüsü, Manisa.
  • ASTM D 2166-00, 2000. Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM West Conshohocken, PA.
  • Chang, I., Im, J., & Cho, G.C. (2016) Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability, 8(3), 251. https://doi.org/10.3390/su8030251
  • Chang, I., Im, J., Prasidhi, A. K., & Cho, G.C. (2015b) Effects of xanthan gum biopolymer on soil strengthening. Construction and Building Materials, 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026
  • Chang, I., Lee, M., Tran, A. T. P., Lee, S., Kwon, Y. M., Im, J., & Cho, G. C. (2020). Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transportation Geotechnics, 24, 100385. https://doi.org/10.1016/j.trgeo.2020.100385
  • Chang, I., Prasidhi, A. K., Im, J., & Cho, G. C. (2015a). Soil strengthening using thermo-gelation biopolymers. Construction and Building Materials, 77, 430–438. https://doi.org/10.1016/j.conbuildmat.2014.12.116
  • Chen, C., Wei, K., Gu, J., Huang, X., Dai, X., & Liu, Q. (2022). Combined effect of biopolymer and fiber inclusions on unconfined compressive strength of soft soil. Polymers, 14, 787. https://doi.org/10.3390/polym14040787
  • Cheng, Z., & Geng, X. (2021). Soil consistency and interparticle characteristics of various biopolymer types stabilization of clay. Geomechanics and Engineering, 27(2), 103-113. https://doi.org/10.12989/gae.2021.27.2.103
  • Çelik, S., Ghalehjough, B. K., Majedi, P., & Akbulut, S. (2017). Effect of randomly fiber reinforcement on shear failure surface of soil, behind flexible retaining walls at different conditions. Indian Journal of Geo-Marine Sciences, 46(10), 2097-2104.
  • Çelik, S. (2017). An Experimental Investigation of Utilizing Waste Red Mud in Soil Grouting. KSCE Journal Of Civil Engineering, 21(4), 1191-1200. https://doi.org/10.1007/s12205-016-0774-0
  • Dahale, P. P., Nagarnaik, P. B., & Gajbhiye, A. Y. (2017). Engineering behavior of remolded expansive soil with lime and flyash. Materials Today: Proceedings, 4(2017), 10581–10585. https://doi.org/10.1016/j.matpr.2017.06.423
  • Dey, P., Maiti, S., & Sa, B. (2012). Locust bean gum and its application in pharmacy and biotechnology: An overview. International Journal of Current Pharmaceutical Research, 4(1), 7-11.
  • Ekmen, A. B., Algin, H. M., & Özen, M. (2020). Strength and stiffness optimisation of fly ash-admixed DCM columns constructed in clayey silty sand. Transportation Geotechnics, 24, 100364. doi.org/10.1016/j.trgeo.2020.100364
  • Fatehi, H., Ong, D. E. L., Yu, J., & Chang, I. (2021). Biopolymers as green binders for soil improvement in geotechnical applications: A review. Geosciences, 11, 291. https://doi.org/10.3390/geosciences11070291
  • Ghazavi, M., & Roustaie, M. (2010). The influenze of freeze thaw cycles on the unconfined compressive strength of fiber reinforced clay. Cold Regions Science and Technology, 61, 125-131. https://doi.org/10.1016/j.coldregions.2009.12.005
  • Hamza, M., Nie, Z., Aziz, M., Ijaz, N., Akram, O., Fang, C., Ghani, M. U., Ijaz, Z., Noshin, S., & Madni, M. F. (2023). Geotechnical behavior of high-plastic clays treated with biopolymer: macro–micro-study. Environmental Earth Sciences, 82, 91. https://doi.org/10.1007/s12665-023-10760-2
  • Hejazi, S. M., Sheikhzadeh, M., Abtahi, S. M., & Zadhoush, A. (2012). A simple review of soil reinforcement by using natural and synthetic fibers. Construction and Building Materials, 30, 100-116. https://doi.org/10.1016/j.conbuildmat.2011.11.045
  • Hohmann-Porebska, M. (2002). Microfabric effects in frozen clays in relation to geotechnical parameters. Applied Clay Science, 21(2002), 77 – 87. https://doi.org/10.1016/S0169-1317(01)00094-1
  • Jamshidi, R., Towhata, I., Ghiassian, H., & Tabarsa, R. (2010). Experimental evaluation of dynamic deformation characteristics of sheet pile retaining walls with fiber reinforced backfill. Soil Dynamics and Earthquake Engineering, 30(6), 438–446. https://doi.org/10.1016/j.soildyn.2009.12.017
  • Jang, J., (2020). A review of the application of biopolymers on geotechnical engineering and the strengthening mechanisms between typical biopolymers and soils. Hindawi Advances in Materials Science and Engineering, 2020, Article ID: 1465709, 1-17. https://doi.org/10.1155/2020/1465709
  • Kalkan, E., & Akbulut, S. (2004). The positive effects of silica fume on the permeability, swelling pressure and compressive strength of natural clay liners. Engineering Geology, 73, 145-156. https://doi.org/10.1016/j.enggeo.2004.01.001
  • Khatami, H. R., & O’Kelly, B. C. (2013). Improving mechanical properties of sand using biopolymers. Journal of Geotechnical and Geoenvironmental Engineering, 139(8),1402-1406. https://doi.org/10.1061/(ASCE)GT.1943-5606.000086
  • Kurt Albayrak, Z. N., & Altun, B. (2021). Strength properties of biopolymer treated clay/marble powder mixtures. Challenge Journal Of Concrete Research Letters, 12(4), 131-137, https://doi.org/10.20528/cjcrl.2021.04.003
  • Kurt Albayrak, Z. N., & Gencer, G. (2021). The usability of clay/pumice mixtures modified with biopolymer as an impermeable liner. KSCE Journal of Civil Engineering, 25(1), 28-36, https://doi.org/10.1007/s12205-020-1053-7
  • Latifi, N., Horpibulsuk, S., Meehan, C. L., Majid, M. Z. A., & Rashid, A. S. A. (2016). Xanthan gum biopolymer: an eco-friendly additive for stabilization of tropical organic peat. Environmental Earth Sciences. https://doi.org/10.1007/s12665- 016- 5643-0
  • Liu, C., Lv, Y., Yu, X., & Wu, X. (2020). Effects of freeze-thaw cycles on the unconfined compressive strength of straw fiber-reinforced soil. Geotextiles and Geomembranes, 48, 581-590. https://doi.org/10.1016/j.geotexmem.2020.03.004
  • Ma, Q., Yang, Y., Xiao, H., & Xing, W. (2018). Studying shear performance of flax fiber-reinforced clay by triaxial test. Advances in Civil Engineering, 2018, 1290572. https://doi.org/10.1155/2018/1290572
  • Rezaei Fard, A., Moradi, G., Karimi Ghalehjough, B., & Abbasnejad, A. (2020). Freezing-thawing resistance evaluation of sandy soil, improved by polyvinyl acetate and ethylene glycol monobutyl ether mixture. Geomechanics and Engineering, 23(2), 179-187. https://doi.org/10.12989/gae.2020.23.2.179
  • Singh S. P., & Das, R. (2020). Geo-engineering properties of expansive soil treated with xanthan gum biopolymer, Geomechanics and Geoengineering, 15(2), 107-122, https://doi.org/10.1080/17486025.2019.1632495
  • Smitha, S., & Sachan, A. (2016). Use of agar biopolymer to improve the shear strength behavior of Sabarmati sand. International Journal of Geotechnical Engineering, 10(4),387-400. https://doi.org/10.1080/19386362.2016.1152674 Wiszniewski, M., & Cabalar, A. F. (2014). Hydraulic conductivity of a biopolymer treated sand. New Frontiers in Geotechnical Engineering, 243, 19-27. https://doi.org/10.1061/9780784413456.003 Zaimoglu, A. (2010). Freezing–thawing behavior of fine-grained soils reinforced with polypropylene fibers. Cold Regions Science and Technology, 60(1), 63-65. https://doi.org/10.1016/j.coldregions.2009.07.001

INVESTIGATION THE COMBINED EFFECT OF BIOPOLYMER AND FIBER ADDITIVES ON STRENGTH AND POST FREEZING-THAWING STRENGTH OF CLAY

Year 2023, , 951 - 961, 03.12.2023
https://doi.org/10.17780/ksujes.1328845

Abstract

Clay soils are known as problematic soils because they lose volumetric stability when they encounter water. Additionally, freeze-thaw phenomenon is an important parameter adversely affects the properties of soils. There are many improvement methods to improve the properties of clay soils to prevent such conditions. Soil improvement with additives is one of the commonly used methods. Among the additives, traditionally chemical materials (i.e. cement, lime) are used, while waste materials (i.e. fly ash) are also used. In recent years, considering environmental damage of these materials, researchers have been searched for materials that don’t cause carbon emissions. In this context, improvement with biopolymers, that called environmentally friendly, green polymers started to be studied. In addition to these, fibers are also used in soil improvement. In literature, the improvement of soils by biopolymers and fibers combined is a new topic. In this study, locust bean gum, a biopolymer, and polyester fiber, a synthetic fiber, were used in different percentages to investigate the strength and post-freeze-thaw strength of clay soil. As a result of the study, it was observed that combination of biopolymer and fiber improved the unconfined compressive strength and post freeze-thaw strength of clay soil more than fiber and biopolymer.

References

  • Akbulut, R. K., & Zaimoğlu, A. Ş. (2019). Effect of aspect ratio on the freezing thawing of a CH clay. Selçuk Üniversitesi Mühendislik Bilim ve Teknik Dergisi, 7, 66-74. https://doi.org/10.15317/Scitech.2019.182
  • Ayeldeen, M. K., Negm, A. M., El Sawwaf, M. A. (2016). Evaluating the physical characteristics of biopolymer/soil mixtures. Arabian Journal of Geosciences, 9: 371. https://doi.org/10.1007/s12517-016-2366-1
  • Ayhan, A. (2011). Biyopolimer Katkıları İle Zeminlerin Mühendislik Özelliklerinin İyileştirilmesi. Yüksek Lisans Tezi. Celal Bayar Üniversitesi Fen Bilimleri Enstitüsü, Manisa.
  • ASTM D 2166-00, 2000. Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM West Conshohocken, PA.
  • Chang, I., Im, J., & Cho, G.C. (2016) Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability, 8(3), 251. https://doi.org/10.3390/su8030251
  • Chang, I., Im, J., Prasidhi, A. K., & Cho, G.C. (2015b) Effects of xanthan gum biopolymer on soil strengthening. Construction and Building Materials, 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026
  • Chang, I., Lee, M., Tran, A. T. P., Lee, S., Kwon, Y. M., Im, J., & Cho, G. C. (2020). Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transportation Geotechnics, 24, 100385. https://doi.org/10.1016/j.trgeo.2020.100385
  • Chang, I., Prasidhi, A. K., Im, J., & Cho, G. C. (2015a). Soil strengthening using thermo-gelation biopolymers. Construction and Building Materials, 77, 430–438. https://doi.org/10.1016/j.conbuildmat.2014.12.116
  • Chen, C., Wei, K., Gu, J., Huang, X., Dai, X., & Liu, Q. (2022). Combined effect of biopolymer and fiber inclusions on unconfined compressive strength of soft soil. Polymers, 14, 787. https://doi.org/10.3390/polym14040787
  • Cheng, Z., & Geng, X. (2021). Soil consistency and interparticle characteristics of various biopolymer types stabilization of clay. Geomechanics and Engineering, 27(2), 103-113. https://doi.org/10.12989/gae.2021.27.2.103
  • Çelik, S., Ghalehjough, B. K., Majedi, P., & Akbulut, S. (2017). Effect of randomly fiber reinforcement on shear failure surface of soil, behind flexible retaining walls at different conditions. Indian Journal of Geo-Marine Sciences, 46(10), 2097-2104.
  • Çelik, S. (2017). An Experimental Investigation of Utilizing Waste Red Mud in Soil Grouting. KSCE Journal Of Civil Engineering, 21(4), 1191-1200. https://doi.org/10.1007/s12205-016-0774-0
  • Dahale, P. P., Nagarnaik, P. B., & Gajbhiye, A. Y. (2017). Engineering behavior of remolded expansive soil with lime and flyash. Materials Today: Proceedings, 4(2017), 10581–10585. https://doi.org/10.1016/j.matpr.2017.06.423
  • Dey, P., Maiti, S., & Sa, B. (2012). Locust bean gum and its application in pharmacy and biotechnology: An overview. International Journal of Current Pharmaceutical Research, 4(1), 7-11.
  • Ekmen, A. B., Algin, H. M., & Özen, M. (2020). Strength and stiffness optimisation of fly ash-admixed DCM columns constructed in clayey silty sand. Transportation Geotechnics, 24, 100364. doi.org/10.1016/j.trgeo.2020.100364
  • Fatehi, H., Ong, D. E. L., Yu, J., & Chang, I. (2021). Biopolymers as green binders for soil improvement in geotechnical applications: A review. Geosciences, 11, 291. https://doi.org/10.3390/geosciences11070291
  • Ghazavi, M., & Roustaie, M. (2010). The influenze of freeze thaw cycles on the unconfined compressive strength of fiber reinforced clay. Cold Regions Science and Technology, 61, 125-131. https://doi.org/10.1016/j.coldregions.2009.12.005
  • Hamza, M., Nie, Z., Aziz, M., Ijaz, N., Akram, O., Fang, C., Ghani, M. U., Ijaz, Z., Noshin, S., & Madni, M. F. (2023). Geotechnical behavior of high-plastic clays treated with biopolymer: macro–micro-study. Environmental Earth Sciences, 82, 91. https://doi.org/10.1007/s12665-023-10760-2
  • Hejazi, S. M., Sheikhzadeh, M., Abtahi, S. M., & Zadhoush, A. (2012). A simple review of soil reinforcement by using natural and synthetic fibers. Construction and Building Materials, 30, 100-116. https://doi.org/10.1016/j.conbuildmat.2011.11.045
  • Hohmann-Porebska, M. (2002). Microfabric effects in frozen clays in relation to geotechnical parameters. Applied Clay Science, 21(2002), 77 – 87. https://doi.org/10.1016/S0169-1317(01)00094-1
  • Jamshidi, R., Towhata, I., Ghiassian, H., & Tabarsa, R. (2010). Experimental evaluation of dynamic deformation characteristics of sheet pile retaining walls with fiber reinforced backfill. Soil Dynamics and Earthquake Engineering, 30(6), 438–446. https://doi.org/10.1016/j.soildyn.2009.12.017
  • Jang, J., (2020). A review of the application of biopolymers on geotechnical engineering and the strengthening mechanisms between typical biopolymers and soils. Hindawi Advances in Materials Science and Engineering, 2020, Article ID: 1465709, 1-17. https://doi.org/10.1155/2020/1465709
  • Kalkan, E., & Akbulut, S. (2004). The positive effects of silica fume on the permeability, swelling pressure and compressive strength of natural clay liners. Engineering Geology, 73, 145-156. https://doi.org/10.1016/j.enggeo.2004.01.001
  • Khatami, H. R., & O’Kelly, B. C. (2013). Improving mechanical properties of sand using biopolymers. Journal of Geotechnical and Geoenvironmental Engineering, 139(8),1402-1406. https://doi.org/10.1061/(ASCE)GT.1943-5606.000086
  • Kurt Albayrak, Z. N., & Altun, B. (2021). Strength properties of biopolymer treated clay/marble powder mixtures. Challenge Journal Of Concrete Research Letters, 12(4), 131-137, https://doi.org/10.20528/cjcrl.2021.04.003
  • Kurt Albayrak, Z. N., & Gencer, G. (2021). The usability of clay/pumice mixtures modified with biopolymer as an impermeable liner. KSCE Journal of Civil Engineering, 25(1), 28-36, https://doi.org/10.1007/s12205-020-1053-7
  • Latifi, N., Horpibulsuk, S., Meehan, C. L., Majid, M. Z. A., & Rashid, A. S. A. (2016). Xanthan gum biopolymer: an eco-friendly additive for stabilization of tropical organic peat. Environmental Earth Sciences. https://doi.org/10.1007/s12665- 016- 5643-0
  • Liu, C., Lv, Y., Yu, X., & Wu, X. (2020). Effects of freeze-thaw cycles on the unconfined compressive strength of straw fiber-reinforced soil. Geotextiles and Geomembranes, 48, 581-590. https://doi.org/10.1016/j.geotexmem.2020.03.004
  • Ma, Q., Yang, Y., Xiao, H., & Xing, W. (2018). Studying shear performance of flax fiber-reinforced clay by triaxial test. Advances in Civil Engineering, 2018, 1290572. https://doi.org/10.1155/2018/1290572
  • Rezaei Fard, A., Moradi, G., Karimi Ghalehjough, B., & Abbasnejad, A. (2020). Freezing-thawing resistance evaluation of sandy soil, improved by polyvinyl acetate and ethylene glycol monobutyl ether mixture. Geomechanics and Engineering, 23(2), 179-187. https://doi.org/10.12989/gae.2020.23.2.179
  • Singh S. P., & Das, R. (2020). Geo-engineering properties of expansive soil treated with xanthan gum biopolymer, Geomechanics and Geoengineering, 15(2), 107-122, https://doi.org/10.1080/17486025.2019.1632495
  • Smitha, S., & Sachan, A. (2016). Use of agar biopolymer to improve the shear strength behavior of Sabarmati sand. International Journal of Geotechnical Engineering, 10(4),387-400. https://doi.org/10.1080/19386362.2016.1152674 Wiszniewski, M., & Cabalar, A. F. (2014). Hydraulic conductivity of a biopolymer treated sand. New Frontiers in Geotechnical Engineering, 243, 19-27. https://doi.org/10.1061/9780784413456.003 Zaimoglu, A. (2010). Freezing–thawing behavior of fine-grained soils reinforced with polypropylene fibers. Cold Regions Science and Technology, 60(1), 63-65. https://doi.org/10.1016/j.coldregions.2009.07.001
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Civil Geotechnical Engineering
Journal Section Civil Engineering
Authors

Büşra Güven 0000-0001-7255-3307

Şifa Günek 0000-0002-0446-2056

Zeynep Neşe Kurt Albayrak 0000-0002-6323-8652

Publication Date December 3, 2023
Submission Date July 18, 2023
Published in Issue Year 2023

Cite

APA Güven, B., Günek, Ş., & Kurt Albayrak, Z. N. (2023). KİLİN MUKAVEMETİ VE DONMA-ÇÖZÜLME SONRASI MUKAVEMETİ ÜZERİNDE BİYOPOLİMER VE LİF KATKISININ ORTAK ETKİSİNİN ARAŞTIRILMASI. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(4), 951-961. https://doi.org/10.17780/ksujes.1328845