Review
BibTex RIS Cite

A REVIEW ON THE USE OF ADDITIVE MANUFACTURING TECHNOLOGY IN THE RAILWAY INDUSTRY

Year 2023, , 1078 - 1096, 03.12.2023
https://doi.org/10.17780/ksujes.1355716

Abstract

Additive manufacturing is an innovative method where objects are produced layer by layer, unlike traditional production methods. In recent years, the applications of additive manufacturing have been rapidly expanding. The potential for using this manufacturing method is high not only in various sectors but also in the railway industry, just like many others. In the railway industry, additive manufacturing is commonly observed to be utilized in both railway infrastructure and superstructure, as well as in railway vehicles. The advantages of additive manufacturing, such as enabling customization of parts, production of complex components, design freedom, rapid prototyping, material savings, and low production costs, contribute to its widespread adoption not only in the railway industry but also in various other sectors. Despite certain limitations such as material restrictions and production speed, the opportunities presented by these advantages encourage innovation in numerous fields. This study provides general insights into the railway industry and additive manufacturing. Furthermore, it investigates the utilization of additive manufacturing in the railway industry and its various applications. As a result of this study, it aims to identify areas where additive manufacturing is already being employed within the railway industry and where it might be underutilized. This can help researchers work towards enhancing its application areas in the railway industry.

References

  • Almaghariz, E. S., Conner, B. P., Lenner, L., Gullapalli, R., Manogharan, G. P., Lamoncha, B., & Fang, M. (2016). Quantifying the Role of Part Design Complexity in Using 3D Sand Printing for Molds and Cores. International Journal of Metalcasting, 10(3), 240-252. https://doi.org/10.1007/s40962-016-0027-5
  • Arlı, V. (2002). Balastlı ve Balastsız Üstyapıların Ekonomik Yönden Karşılaştırılması.Yüksek Lisans Tezi. İTÜ Fen Bilimleri Enstitüsü İnşaat Mühendisliği Anabilim Dalı, İstanbul
  • Ayyıldız, R., & Eyi̇gün, Y. (2020). Raylı Sistem Araçlarının Yerlileştirilmesi. İstanbul Ticaret Üniversitesi Teknoloji ve Uygulamalı Bilimler Dergisi, 3(1), 107-120.
  • Başcı, Ü. G., & Yamanoğlu, R. (2021). Yeni Nesil Üretim Teknolojisi: FDM ile Eklemeli İmalat. International Journal of 3D Printing Technologies and Digital Industry, 5(2), 339-352. https://doi.org/10.46519/ij3dptdi.838281
  • Bilgiç, Ş. (2017). Demiryolu. OGÜ, Ders Notu. https://web.ogu.edu.tr/Storage/akalin/Uploads/demiryolu-dersnotu-1-2017.pdf Erişim 01.06.2023
  • Bozkurt, Y., Gülsoy, H., & Karayel, E. (2021). Eklemeli İmalat Teknolojilerinin Tıbbi Ekipmanların Üretiminde Kullanımı. El-Cezeri Fen ve Mühendislik Dergisi. https://doi.org/10.31202/ecjse.902023
  • Broekman, A., & Gräbe, P. J. (2021). Development of virtual environments for deep learning railway applications. SAHHA Technical Conference 2021 Proceedings.
  • Cambridge Üniversitesi. (2023). 3B beton istinat duvarı ve menfez. http://www.eng.cam.ac.uk/news/cambridge-researchers-help-develop-smart-3d-printed-concrete-wall-national-highways-project Erişim 21.08.2023,
  • Chen, S.-E., Shanmugam, N. S., Boyajian, D., Chavan, V. S., Weber, E., & Baarsons, K. (2021). Prototyping rail track for micro-people movers using additive manufacturing: Failure topology characterization. Construction and Building Materials, 281, 122623. https://doi.org/10.1016/j.conbuildmat.2021.122623
  • Chim, Y. Y., Leung, M. H. F., Ni, Y. Q., & Tsang, E. C. L. (2019). RFID Based Battery-Free Sensor Node for Smart Railway Application using 3D-Printing Technology. 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), 1-3. https://doi.org/10.1109/FLEPS.2019.8792251
  • Cislaghi, A., Sala, P., Borgonovo, G., Gandolfi, C., & Bischetti, G. B. (2021). Towards More Sustainable Materials for Geo-Environmental Engineering: The Case of Geogrids. Sustainability, 13(5), 2585. https://doi.org/10.3390/su13052585
  • Çeçen, F., & Aktaş, B. (2021). Yeni Nesil Demiryolu Traversleri ve Yerli FRP Donatı Kullanımının Deneysel Araştırması. Demiryolu Mühendisliği, 13, 53-64. https://doi.org/10.47072/demiryolu.803452
  • Çelebi̇, A., & Koda, Y. (2021). Endüstri 4.0 Çerçevesinde Katmanlı İmalatta Sensör Uygulamaları. International Journal of 3D Printing Technologies and Digital Industry, 5(1), 85-97. https://doi.org/10.46519/ij3dptdi.837635
  • Fereshtenejad, S., & Song, J.-J. (2016). Fundamental Study on Applicability of Powder-Based 3D Printer for Physical Modeling in Rock Mechanics. Rock Mechanics and Rock Engineering, 49(6), 2065-2074. https://doi.org/10.1007/s00603-015-0904-x
  • Feucht, T., Waldschmitt, B., Lange, J., & Erven, M. (2021). 3D‐Printing with Steel: Additive Manufacturing of a Bridge in situ. Ce/Papers, 4(2-4), 1695-1701. https://doi.org/10.1002/cepa.1475
  • Fu, H., & Kaewunruen, S. (2022). State-of-the-Art Review on Additive Manufacturing Technology in Railway Infrastructure Systems. Journal of Composites Science, 6(1), 7. https://doi.org/10.3390/jcs6010007
  • Gündüz, A. Y., Kaya, M., & Aydemir, C. (2011). Kentiçi Ulaşımında Karayolu Ulaşımına Alternatif Sistem: Raylı Ulaşım Sistemi. Akademik Yaklaşımlar Dergisi, 2(1), 134-151.
  • Hohenwarter, D., Fischer, C., & Berger, M. (2020). Influence of 3D-Printing on the Flammability Properties of Railway Applications Using Polycarbonate (PC) and Polylactic acid (PLA). Problemy Kolejnictwa - Railway Reports, 64(187), 99-107. https://doi.org/10.36137/1874E
  • Hoosain, S. E., Tshabalala, L., Bester, D., Chetty, D., & Mukwevho, G. (2020). Additive manufacturing case study in the railway industry. Proceedings of the Rapid Product Development Association of South Africa (RAPDASA), 80-86.
  • Kabasakal, A., & Solak, A. O. (2009). Demiryolu Sektörünün Rekabete Açılması. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, 25.
  • Kang, J., & Ma, Q. (2017). The role and impact of 3D printing technologies in casting. China Foundry, 14(3), 157-168. https://doi.org/10.1007/s41230-017-6109-z
  • Killen, A., Fu, L., Coxon, S., & Napper, R. (2018). Exploring the use of Additive Manufacturing in Providing an Alternative Approach to the Design, Manufacture and Maintenance of Interior Rail Components. Australasian Transport Research Forum 2018 Proceedings, 30.
  • Lai, Q., Abrahams, R., Yan, W., Qiu, C., Mutton, P., Paradowska, A., Soodi, M., & Wu, X. (2019). Influences of depositing materials, processing parameters and heating conditions on material characteristics of laser-cladded hypereutectoid rails. Journal of Materials Processing Technology, 263, 1-20. https://doi.org/10.1016/j.jmatprotec.2018.07.035
  • Lee, K., & Jung, H. (2022). An improvement of manufacturing process using 3D printing technology for overhead line components on railway electrification. Journal of Electrical Engineering & Technology, 17(5), 3085-3091. https://doi.org/10.1007/s42835-022-01209-w
  • Li, L., Yang, J., Fu, J., Wang, S., Zhang, C., & Xiang, M. (2022). Experimental investigation on the invert stability of operating railway tunnels with different drainage systems using 3D printing technology. Journal of Rock Mechanics and Geotechnical Engineering, 14(5), 1470-1485. https://doi.org/10.1016/j.jrmge.2021.12.013
  • Liu, S., Huang, H., Qiu, T., & Kerchof, B. (2019). Characterization of Ballast Particle Movement at Mud Spot. Journal of Materials in Civil Engineering, 31(1), 04018339. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002545
  • Liu, S., Huang, H., Qiu, T., & Kwon, J. (2017). Comparative Evaluation of Particle Movement in a Ballast Track Structure Stabilized with Biaxial and Multiaxial Geogrids. Transportation Research Record: Journal of the Transportation Research Board, 2607(1), 15-23. https://doi.org/10.3141/2607-04
  • Mortazavian, E. (2022). Mobıle 3D Printing of Rail Track Surface For Rapid Repair. Ph.D. Thesis. University of Nevada Department of Mechanical Engineering, Las Vegas.
  • Nellian, A. S., & Pang, J. H. L. (2023). Laser metal deposition characterization study of metal additive manufacturing repair of rail steel specimens. Virtual and Physical Prototyping, 18(1), e2134042. https://doi.org/10.1080/17452759.2022.2134042
  • Özsolak, O. (2019). Eklemeli İmalat Yöntemleri ve Kullanılan Malzemeler. International Journal of Innovative Engineering Applications, 3(1), 9-14.
  • Özsoy, K., & Duman, B. (2017). Eklemeli İmalat (3 Boyutlu Baskı) Teknolojilerinin Eğitimde Kullanılabilirliği. International Journal of 3D Printing Technologies and Digital Industry, 1(1), 36-48.
  • Pan, Y., Zhang, Y., Zhang, D., & Song, Y. (2021). 3D printing in construction: State of the art and applications. The International Journal of Advanced Manufacturing Technology, 115(5-6), 1329-1348. https://doi.org/10.1007/s00170-021-07213-0
  • Salet, T. A. M., Ahmed, Z. Y., Bos, F. P., & Laagland, H. L. M. (2018). Design of a 3D printed concrete bridge by testing. Virtual and Physical Prototyping, 13(3), 222-236. https://doi.org/10.1080/17452759.2018.1476064
  • Saltık, O., & Özsoy, A. (2020). Bağlayıcı Püskürtmeli Metal Eklemeli İmalatta Kullanılan Bağlayıcılar. Uluborlu Mesleki Bilimler Dergisi, 3(1), 10-18.
  • Setaki, F., Tian, F., Turrin, M., Tenpierik, M., Nijs, L., & Van Timmeren, A. (2023). 3D-printed sound absorbers: Compact and customisable at broadband frequencies. Architecture, Structures and Construction, 3(2), 205-215. https://doi.org/10.1007/s44150-023-00086-9
  • Sevi̇, M., Aydin, İ., & Karaköse, M. (2022). Derin Öğrenme Yöntemleri ile Demiryolu Bağlantı Elemanlarının Sınıflandırılması. European Journal of Science and Technology, 35, 268-274. https://doi.org/10.31590/ejosat.1029905
  • Sürmen, H. K. (2019). Eklemeli İmalat (3B Baskı): Teknolojiler ve Uygulamalar. Uludağ University Journal of The Faculty of Engineering, 24(2), 373-392. https://doi.org/10.17482/uumfd.519147
  • Şen, M. (2023). Eklemeli İmalat Yöntemi ile Üretilen Parçaların Kaynakla Birleştirilmesi ve Analizi. Doktora Tezi. Marmara Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Anabilim Dalı, İstanbul
  • Taci̇roğlu, M. V. (2016). Demiryolu Hat Oturmasının Matematiksel Modelleri ve Hat Oturmasına Etki Eden Parametrelerin İncelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 4(3), 239-246. https://doi.org/10.21923/jesd.49727
  • Teizer, J., Blickle, A., King, T., Leitzbach, O., & Guenther, D. (2016, Temmuz 21). Large Scale 3D Printing of Complex Geometric Shapes in Construction. 33th International Symposium on Automation and Robotics in Construction, Auburn, AL, USA. https://doi.org/10.22260/ISARC2016/0114
  • Toth, A. D., Padayachee, J., Mahlatji, T., & Vilakazi, S. (2022). Report on case studies of additive manufacturing in the South African railway industry. Scientific African, 16, e01219. https://doi.org/10.1016/j.sciaf.2022.e01219
  • Toth, A. D., & Vilakazi, S. (2019). Benefits of Reinforced Meshing and Materials Testing of 3D Printed Parts to Assist Mechanical Design In The Railway Infrastructure Environment. RAPDASA 2019 Conference Proceedings.
  • Van Schalkwyk, M. H., & Gräbe, P. J. (2022). Condition monitoring of train wheels using a cost-effective smart rail pad. Engineering Research Express, 4(3), 035045. https://doi.org/10.1088/2631-8695/ac87ec
  • Wang, X., Zhang, S., Wang, Z. Y., Zhang, C. H., Wu, C. L., & Wang, M. (2022). 3D printing externally reinforced layers for high-speed railway brake discs: Adaptability of SLM processes for manufacturing gradient materials. Materials Today Communications, 31, 103778. https://doi.org/10.1016/j.mtcomm.2022.103778
  • WinSun (2023). 3B baskılı ses bariyerleri. http://www.winsun3d.com/En/News/news_inner/id/569 Erişim 31.07.2023
  • Wu, Z., Wu, S., Qian, W., Zhang, H., Zhu, H., Chen, Q., Zhang, Z., Guo, F., Wang, J., & Withers, P. J. (2023). Structural integrity issues of additively manufactured railway components: Progress and challenges. Engineering Failure Analysis, 149, 107265. https://doi.org/10.1016/j.engfailanal.2023.107265
  • Yalçın, B., & Ergene, B. (2017). Endüstride Yeni Eğilim Olan 3-B Eklemeli İmalat Yöntemi ve Metalurjisi. SDU International Journal of Technological Sciences, 9(3), 65-88.
  • Yang, Bai, Zhu, Kiran, An, Chua, & Zhou. (2020). 3D Printing of Polymeric Multi-Layer Micro-Perforated Panels for Tunable Wideband Sound Absorption. Polymers, 12(2), 360. https://doi.org/10.3390/polym12020360
  • Yeşi̇loğlu, R. (2022). Eklemeli İmalat ile Üretilen Farklı Dolgu Geometrisi ve Yoğunluğa Sahip PLA Esaslı Yapıların Mekanik Davranışlarının Deneysel Olarak Araştırılması. Yüksek Lisans Tezi. Karabük Üniversitesi Lisansüstü Eğitim Enstitüsü Makine Mühendisliği Anabilim Dalı, Karabük
  • Yilmaz, A. (2015). Demiryolu Üstyapısında Balast Kirliliği. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1), 11-17.
  • Zeng, K., Qiu, T., Bian, X., Xiao, M., & Huang, H. (2019). Identification of ballast condition using SmartRock and pattern recognition. Construction and Building Materials, 221, 50-59. https://doi.org/10.1016/j.conbuildmat.2019.06.049
  • Zhao, T., Chen, Y., Zhang, K., & Hu, G. (2021). Tunable network sound absorber based on additive manufacturing. The Journal of the Acoustical Society of America, 150(1), 94-101. https://doi.org/10.1121/10.0005507

EKLEMELİ İMALAT TEKNOLOJİSİNİN DEMİRYOLU ENDÜSTRİSİNDE KULLANIMI ÜZERİNE BİR DERLEME

Year 2023, , 1078 - 1096, 03.12.2023
https://doi.org/10.17780/ksujes.1355716

Abstract

Eklemeli imalat, geleneksel üretim yöntemlerine göre nesnelerin katman katman üretildiği yenilikçi bir yöntemidir. Son yıllarda eklemeli imalatın kullanım alanları hızla artmaktadır. Bu imalat yönteminin birçok sektörde olduğu gibi demiryolu sektöründe de kullanım potansiyeli yüksektir. Demiryolu endüstrisinde eklemeli imalatın genel olarak; demiryolu altyapısında ve demiryolu üstyapısında, demiryolu araçlarında kullanıldığı görülmektedir. Eklemeli imalatın özellikle parçaların özelleştirilmesine olanak tanıması, karmaşık parçaların üretimi ve tasarım özgürlüğü, hızlı prototipleme, malzeme tasarrufu, düşük üretim maliyeti gibi avantajları, demiryolu endüstrisinde ve diğer endüstrilerde kullanımının yaygınlaşmasına olanak sağlamaktadır. Eklemeli imalatın malzeme sınırlamaları ve üretim hızı gibi bazı sınırlamaları olsa da, bu avantajların sunduğu imkanlar birçok alanda yeniliği teşvik etmektedir. Bu çalışmayla, demiryolu endüstrisi ve eklemeli imalat hakkında genel bilgiler verilmiştir. Ayrıca, eklemeli imalatın demiryolu endüstrisinde kullanımı ve kullanıldığı alanlar hakkında inceleme yapılmıştır. Çalışma sonucunda, araştırmacılar için eklemeli imalatın demiryolu endüstrisinde hangi alanlarda kullanıldığı, hangi alanlarda ise kullanımının eksik olduğunun görülmesi ile kullanım alanının geliştirilmesi sağlanmaya çalışılmıştır.

References

  • Almaghariz, E. S., Conner, B. P., Lenner, L., Gullapalli, R., Manogharan, G. P., Lamoncha, B., & Fang, M. (2016). Quantifying the Role of Part Design Complexity in Using 3D Sand Printing for Molds and Cores. International Journal of Metalcasting, 10(3), 240-252. https://doi.org/10.1007/s40962-016-0027-5
  • Arlı, V. (2002). Balastlı ve Balastsız Üstyapıların Ekonomik Yönden Karşılaştırılması.Yüksek Lisans Tezi. İTÜ Fen Bilimleri Enstitüsü İnşaat Mühendisliği Anabilim Dalı, İstanbul
  • Ayyıldız, R., & Eyi̇gün, Y. (2020). Raylı Sistem Araçlarının Yerlileştirilmesi. İstanbul Ticaret Üniversitesi Teknoloji ve Uygulamalı Bilimler Dergisi, 3(1), 107-120.
  • Başcı, Ü. G., & Yamanoğlu, R. (2021). Yeni Nesil Üretim Teknolojisi: FDM ile Eklemeli İmalat. International Journal of 3D Printing Technologies and Digital Industry, 5(2), 339-352. https://doi.org/10.46519/ij3dptdi.838281
  • Bilgiç, Ş. (2017). Demiryolu. OGÜ, Ders Notu. https://web.ogu.edu.tr/Storage/akalin/Uploads/demiryolu-dersnotu-1-2017.pdf Erişim 01.06.2023
  • Bozkurt, Y., Gülsoy, H., & Karayel, E. (2021). Eklemeli İmalat Teknolojilerinin Tıbbi Ekipmanların Üretiminde Kullanımı. El-Cezeri Fen ve Mühendislik Dergisi. https://doi.org/10.31202/ecjse.902023
  • Broekman, A., & Gräbe, P. J. (2021). Development of virtual environments for deep learning railway applications. SAHHA Technical Conference 2021 Proceedings.
  • Cambridge Üniversitesi. (2023). 3B beton istinat duvarı ve menfez. http://www.eng.cam.ac.uk/news/cambridge-researchers-help-develop-smart-3d-printed-concrete-wall-national-highways-project Erişim 21.08.2023,
  • Chen, S.-E., Shanmugam, N. S., Boyajian, D., Chavan, V. S., Weber, E., & Baarsons, K. (2021). Prototyping rail track for micro-people movers using additive manufacturing: Failure topology characterization. Construction and Building Materials, 281, 122623. https://doi.org/10.1016/j.conbuildmat.2021.122623
  • Chim, Y. Y., Leung, M. H. F., Ni, Y. Q., & Tsang, E. C. L. (2019). RFID Based Battery-Free Sensor Node for Smart Railway Application using 3D-Printing Technology. 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), 1-3. https://doi.org/10.1109/FLEPS.2019.8792251
  • Cislaghi, A., Sala, P., Borgonovo, G., Gandolfi, C., & Bischetti, G. B. (2021). Towards More Sustainable Materials for Geo-Environmental Engineering: The Case of Geogrids. Sustainability, 13(5), 2585. https://doi.org/10.3390/su13052585
  • Çeçen, F., & Aktaş, B. (2021). Yeni Nesil Demiryolu Traversleri ve Yerli FRP Donatı Kullanımının Deneysel Araştırması. Demiryolu Mühendisliği, 13, 53-64. https://doi.org/10.47072/demiryolu.803452
  • Çelebi̇, A., & Koda, Y. (2021). Endüstri 4.0 Çerçevesinde Katmanlı İmalatta Sensör Uygulamaları. International Journal of 3D Printing Technologies and Digital Industry, 5(1), 85-97. https://doi.org/10.46519/ij3dptdi.837635
  • Fereshtenejad, S., & Song, J.-J. (2016). Fundamental Study on Applicability of Powder-Based 3D Printer for Physical Modeling in Rock Mechanics. Rock Mechanics and Rock Engineering, 49(6), 2065-2074. https://doi.org/10.1007/s00603-015-0904-x
  • Feucht, T., Waldschmitt, B., Lange, J., & Erven, M. (2021). 3D‐Printing with Steel: Additive Manufacturing of a Bridge in situ. Ce/Papers, 4(2-4), 1695-1701. https://doi.org/10.1002/cepa.1475
  • Fu, H., & Kaewunruen, S. (2022). State-of-the-Art Review on Additive Manufacturing Technology in Railway Infrastructure Systems. Journal of Composites Science, 6(1), 7. https://doi.org/10.3390/jcs6010007
  • Gündüz, A. Y., Kaya, M., & Aydemir, C. (2011). Kentiçi Ulaşımında Karayolu Ulaşımına Alternatif Sistem: Raylı Ulaşım Sistemi. Akademik Yaklaşımlar Dergisi, 2(1), 134-151.
  • Hohenwarter, D., Fischer, C., & Berger, M. (2020). Influence of 3D-Printing on the Flammability Properties of Railway Applications Using Polycarbonate (PC) and Polylactic acid (PLA). Problemy Kolejnictwa - Railway Reports, 64(187), 99-107. https://doi.org/10.36137/1874E
  • Hoosain, S. E., Tshabalala, L., Bester, D., Chetty, D., & Mukwevho, G. (2020). Additive manufacturing case study in the railway industry. Proceedings of the Rapid Product Development Association of South Africa (RAPDASA), 80-86.
  • Kabasakal, A., & Solak, A. O. (2009). Demiryolu Sektörünün Rekabete Açılması. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, 25.
  • Kang, J., & Ma, Q. (2017). The role and impact of 3D printing technologies in casting. China Foundry, 14(3), 157-168. https://doi.org/10.1007/s41230-017-6109-z
  • Killen, A., Fu, L., Coxon, S., & Napper, R. (2018). Exploring the use of Additive Manufacturing in Providing an Alternative Approach to the Design, Manufacture and Maintenance of Interior Rail Components. Australasian Transport Research Forum 2018 Proceedings, 30.
  • Lai, Q., Abrahams, R., Yan, W., Qiu, C., Mutton, P., Paradowska, A., Soodi, M., & Wu, X. (2019). Influences of depositing materials, processing parameters and heating conditions on material characteristics of laser-cladded hypereutectoid rails. Journal of Materials Processing Technology, 263, 1-20. https://doi.org/10.1016/j.jmatprotec.2018.07.035
  • Lee, K., & Jung, H. (2022). An improvement of manufacturing process using 3D printing technology for overhead line components on railway electrification. Journal of Electrical Engineering & Technology, 17(5), 3085-3091. https://doi.org/10.1007/s42835-022-01209-w
  • Li, L., Yang, J., Fu, J., Wang, S., Zhang, C., & Xiang, M. (2022). Experimental investigation on the invert stability of operating railway tunnels with different drainage systems using 3D printing technology. Journal of Rock Mechanics and Geotechnical Engineering, 14(5), 1470-1485. https://doi.org/10.1016/j.jrmge.2021.12.013
  • Liu, S., Huang, H., Qiu, T., & Kerchof, B. (2019). Characterization of Ballast Particle Movement at Mud Spot. Journal of Materials in Civil Engineering, 31(1), 04018339. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002545
  • Liu, S., Huang, H., Qiu, T., & Kwon, J. (2017). Comparative Evaluation of Particle Movement in a Ballast Track Structure Stabilized with Biaxial and Multiaxial Geogrids. Transportation Research Record: Journal of the Transportation Research Board, 2607(1), 15-23. https://doi.org/10.3141/2607-04
  • Mortazavian, E. (2022). Mobıle 3D Printing of Rail Track Surface For Rapid Repair. Ph.D. Thesis. University of Nevada Department of Mechanical Engineering, Las Vegas.
  • Nellian, A. S., & Pang, J. H. L. (2023). Laser metal deposition characterization study of metal additive manufacturing repair of rail steel specimens. Virtual and Physical Prototyping, 18(1), e2134042. https://doi.org/10.1080/17452759.2022.2134042
  • Özsolak, O. (2019). Eklemeli İmalat Yöntemleri ve Kullanılan Malzemeler. International Journal of Innovative Engineering Applications, 3(1), 9-14.
  • Özsoy, K., & Duman, B. (2017). Eklemeli İmalat (3 Boyutlu Baskı) Teknolojilerinin Eğitimde Kullanılabilirliği. International Journal of 3D Printing Technologies and Digital Industry, 1(1), 36-48.
  • Pan, Y., Zhang, Y., Zhang, D., & Song, Y. (2021). 3D printing in construction: State of the art and applications. The International Journal of Advanced Manufacturing Technology, 115(5-6), 1329-1348. https://doi.org/10.1007/s00170-021-07213-0
  • Salet, T. A. M., Ahmed, Z. Y., Bos, F. P., & Laagland, H. L. M. (2018). Design of a 3D printed concrete bridge by testing. Virtual and Physical Prototyping, 13(3), 222-236. https://doi.org/10.1080/17452759.2018.1476064
  • Saltık, O., & Özsoy, A. (2020). Bağlayıcı Püskürtmeli Metal Eklemeli İmalatta Kullanılan Bağlayıcılar. Uluborlu Mesleki Bilimler Dergisi, 3(1), 10-18.
  • Setaki, F., Tian, F., Turrin, M., Tenpierik, M., Nijs, L., & Van Timmeren, A. (2023). 3D-printed sound absorbers: Compact and customisable at broadband frequencies. Architecture, Structures and Construction, 3(2), 205-215. https://doi.org/10.1007/s44150-023-00086-9
  • Sevi̇, M., Aydin, İ., & Karaköse, M. (2022). Derin Öğrenme Yöntemleri ile Demiryolu Bağlantı Elemanlarının Sınıflandırılması. European Journal of Science and Technology, 35, 268-274. https://doi.org/10.31590/ejosat.1029905
  • Sürmen, H. K. (2019). Eklemeli İmalat (3B Baskı): Teknolojiler ve Uygulamalar. Uludağ University Journal of The Faculty of Engineering, 24(2), 373-392. https://doi.org/10.17482/uumfd.519147
  • Şen, M. (2023). Eklemeli İmalat Yöntemi ile Üretilen Parçaların Kaynakla Birleştirilmesi ve Analizi. Doktora Tezi. Marmara Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Anabilim Dalı, İstanbul
  • Taci̇roğlu, M. V. (2016). Demiryolu Hat Oturmasının Matematiksel Modelleri ve Hat Oturmasına Etki Eden Parametrelerin İncelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 4(3), 239-246. https://doi.org/10.21923/jesd.49727
  • Teizer, J., Blickle, A., King, T., Leitzbach, O., & Guenther, D. (2016, Temmuz 21). Large Scale 3D Printing of Complex Geometric Shapes in Construction. 33th International Symposium on Automation and Robotics in Construction, Auburn, AL, USA. https://doi.org/10.22260/ISARC2016/0114
  • Toth, A. D., Padayachee, J., Mahlatji, T., & Vilakazi, S. (2022). Report on case studies of additive manufacturing in the South African railway industry. Scientific African, 16, e01219. https://doi.org/10.1016/j.sciaf.2022.e01219
  • Toth, A. D., & Vilakazi, S. (2019). Benefits of Reinforced Meshing and Materials Testing of 3D Printed Parts to Assist Mechanical Design In The Railway Infrastructure Environment. RAPDASA 2019 Conference Proceedings.
  • Van Schalkwyk, M. H., & Gräbe, P. J. (2022). Condition monitoring of train wheels using a cost-effective smart rail pad. Engineering Research Express, 4(3), 035045. https://doi.org/10.1088/2631-8695/ac87ec
  • Wang, X., Zhang, S., Wang, Z. Y., Zhang, C. H., Wu, C. L., & Wang, M. (2022). 3D printing externally reinforced layers for high-speed railway brake discs: Adaptability of SLM processes for manufacturing gradient materials. Materials Today Communications, 31, 103778. https://doi.org/10.1016/j.mtcomm.2022.103778
  • WinSun (2023). 3B baskılı ses bariyerleri. http://www.winsun3d.com/En/News/news_inner/id/569 Erişim 31.07.2023
  • Wu, Z., Wu, S., Qian, W., Zhang, H., Zhu, H., Chen, Q., Zhang, Z., Guo, F., Wang, J., & Withers, P. J. (2023). Structural integrity issues of additively manufactured railway components: Progress and challenges. Engineering Failure Analysis, 149, 107265. https://doi.org/10.1016/j.engfailanal.2023.107265
  • Yalçın, B., & Ergene, B. (2017). Endüstride Yeni Eğilim Olan 3-B Eklemeli İmalat Yöntemi ve Metalurjisi. SDU International Journal of Technological Sciences, 9(3), 65-88.
  • Yang, Bai, Zhu, Kiran, An, Chua, & Zhou. (2020). 3D Printing of Polymeric Multi-Layer Micro-Perforated Panels for Tunable Wideband Sound Absorption. Polymers, 12(2), 360. https://doi.org/10.3390/polym12020360
  • Yeşi̇loğlu, R. (2022). Eklemeli İmalat ile Üretilen Farklı Dolgu Geometrisi ve Yoğunluğa Sahip PLA Esaslı Yapıların Mekanik Davranışlarının Deneysel Olarak Araştırılması. Yüksek Lisans Tezi. Karabük Üniversitesi Lisansüstü Eğitim Enstitüsü Makine Mühendisliği Anabilim Dalı, Karabük
  • Yilmaz, A. (2015). Demiryolu Üstyapısında Balast Kirliliği. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1), 11-17.
  • Zeng, K., Qiu, T., Bian, X., Xiao, M., & Huang, H. (2019). Identification of ballast condition using SmartRock and pattern recognition. Construction and Building Materials, 221, 50-59. https://doi.org/10.1016/j.conbuildmat.2019.06.049
  • Zhao, T., Chen, Y., Zhang, K., & Hu, G. (2021). Tunable network sound absorber based on additive manufacturing. The Journal of the Acoustical Society of America, 150(1), 94-101. https://doi.org/10.1121/10.0005507
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Reviews
Authors

İbrahim Aslan 0000-0002-9157-9286

Ahmet Can 0000-0002-1231-7369

Publication Date December 3, 2023
Submission Date September 6, 2023
Published in Issue Year 2023

Cite

APA Aslan, İ., & Can, A. (2023). EKLEMELİ İMALAT TEKNOLOJİSİNİN DEMİRYOLU ENDÜSTRİSİNDE KULLANIMI ÜZERİNE BİR DERLEME. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(4), 1078-1096. https://doi.org/10.17780/ksujes.1355716