Research Article
BibTex RIS Cite

EKLEMELİ İMALAT YÖNTEMİYLE ÜRETİLEN ABS CIVATA NUMUNESİNİN MEKANİK ÖZELLİKLERİNİN İNCELENMESİ

Year 2024, , 269 - 277, 03.03.2024
https://doi.org/10.17780/ksujes.1378628

Abstract

Bu çalışmada, eklemeli imalat (Eİ) yöntemiyle üretilen cıvata numunesinin boyutsal doğruluğu ve elastisite modülü hesaplanmıştır. Basılı cıvata örneğinin boyutu, etkin elastisite modülü ve bilgisayar destekli tasarım (CAD) modeliyle karşılaştırılarak tespit edildi. Bu model, katı modelleme yazılımı olan SolidWorks kullanılarak tasarlandı. Numunelerin üretiminde Eİ yöntemlerinden olan eriyik yığma modellemesi (EYM) kullanılmıştır. Bu yöntemde birçok termoplastik malzeme kullanılmakla birlikte, mevcut çalışmada cıvataların üretiminde akrilonitril bütadien stiren (ABS) tipi malzeme tercih edilmiştir. Gerçekleştirilen deneysel çalışmalar ile cıvata numunelerin tek eksenli çekme mukavemeti gözlemlenmiş ve gerilme-gerinim eğrileri kullanılarak esneklikleri tespit edilmiştir. Etkin elastisite modülü, ANSYS yazılımı kullanılarak bilgisayar simülasyonu ile sonlu elemanlar analizi yapılarak oluşturuldu. Gerçek zamanlı uygulanan çekme testi sonucunda en yüksek mukavemet değeri 35.258 MPa olarak ölçülmüştür. Deneysel çalışmalar neticesinde ölçülen çekme mukavemeti değerleri ile simülasyon sonuçlarının uyumlu olduğu tespit edilmiştir. Bu çalışma, gerçek dünya uygulamalarında kullanılmak üzere 3 boyutlu baskılı ABS cıvatalarının oluşturulması, test edilmesi ve optimize edilmesinin birçok yönünün anlaşılmasına yardımcı olacaktır

References

  • Alafaghani, A., Qattawi, A., & Ablat, M. A. (2017). Design Consideration for Additive Manufacturing: Fused Deposition Modelling. Open Journal of Applied Sciences. https://doi.org/10.4236/ojapps.2017.76024
  • Andrzejewski, J., Gronikowski, M., & Aniśko, J. (2022). A Novel Manufacturing Concept of LCP Fiber-Reinforced GPET-Based Sandwich Structures With an FDM 3d-Printed Core. Materials. https://doi.org/10.3390/ma15155405
  • Arif, M. F., Kumar, S., Varadarajan, K. M., & Cantwell, W. (2018). Performance of Biocompatible PEEK Processed by Fused Deposition Additive Manufacturing. Materials & Design. https://doi.org/10.1016/j.matdes.2018.03.015
  • Cattenone, A., Morganti, S., Alaimo, G., & Auricchio, F. (2018). Finite Element Analysis of Additive Manufacturing Based on Fused Deposition Modeling: Distortions Prediction and Comparison With Experimental Data. Journal of Manufacturing Science and Engineering. https://doi.org/10.1115/1.4041626
  • Chacón, J. M., Caminero, M. A., Plaza, E. G., & Núñez, P. J. (2017). Additive Manufacturing of PLA Structures Using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties And their Optimal Selection. Materials & Design. https://doi.org/10.1016/j.matdes.2017.03.065
  • Durão, L. F. C. S., Barkoczy, R., Zancul, E. de S., Ho, L. L., & Bonnard, R. (2019). Optimizing Additive Manufacturing Parameters for the Fused Deposition Modeling Technology Using a Design of Experiments. Progress in Additive Manufacturing. https://doi.org/10.1007/s40964-019-00075-9
  • Goh, G. D., Yap, Y. L., Tan, H. K. J., Sing, S. L., & Yeong, W. Y. (2019). Process–Structure–Properties in Polymer Additive Manufacturing via Material Extrusion: A Review. Critical Reviews in Solid State and Material Sciences. https://doi.org/10.1080/10408436.2018.1549977
  • Jiang, J., Xu, X., & Stringer, J. (2018). Support Structures for Additive Manufacturing: A Review. Journal of Manufacturing and Materials Processing. https://doi.org/10.3390/jmmp2040064
  • Li, M., Lü, T., Dai, J., Jia, X., Gu, X., & Taguchi, D. (2020). Microstructure and Mechanical Properties of 308L Stainless Steel Fabricated by Laminar Plasma Additive Manufacturing. Materials Science and Engineering A. https://doi.org/10.1016/j.msea.2019.138523
  • Magazine, R., Bochove, B. van, Borandeh, S., & Seppälä, J. (2022). 3D Inkjet-Printing of Photo-Crosslinkable Resins for Microlens Fabrication. Additive Manufacturing. https://doi.org/10.1016/j.addma.2021.102534
  • Meng, L., McWilliams, B., Jarosinski, W., Park, H.-Y., Jung, Y., Lee, J.-H., & Zhang, J. (2020). Machine Learning in Additive Manufacturing: A Review. Jom. https://doi.org/10.1007/s11837-020-04155-y
  • Nieto, D. M., & Molina, S. I. (2019). Large-Format Fused Deposition Additive Manufacturing: A Review. Rapid Prototyping Journal. https://doi.org/10.1108/rpj-05-2018-0126
  • Prakash, K. S., Nancharaih, T., & Rao, V. V. S. (2018). Additive Manufacturing Techniques in Manufacturing -an Overview. Materials Today Proceedings. https://doi.org/10.1016/j.matpr.2017.11.642
  • Singh, S., Ramakrishna, S., & Singh, R. (2017). Material Issues in Additive Manufacturing: A Review. Journal of Manufacturing Processes. https://doi.org/10.1016/j.jmapro.2016.11.006
  • Turan, S. R., Ülkir, O., Kuncan, M., & Buldu, A. (2022). Stereolithografi Eklemeli İmalat Yöntemleriyle Farklı Doluluk Oranlarında Üretilen Numunelerin Mekanik Özelliklerinin İncelenmesi. International Journal of 3D Printing Technologies and Digital Industry. https://doi.org/10.46519/ij3dptdi.1138450
  • Ulkir, O. (2023). Conductive Additive Manufactured Acrylonitrile Butadiene Styrene Filaments: Statistical Approach to Mechanical and Electrical Behaviors. 3D Printing and Additive Manufacturing. https://doi.org/10.1089/3dp.2022.0287
  • Vahed, R., Rajani, H. R. Z., & Milani, A. S. (2022). Can a Black-Box AI Replace Costly DMA Testing?—A Case Study on Prediction and Optimization of Dynamic Mechanical Properties of 3D Printed Acrylonitrile Butadiene Styrene. Materials. https://doi.org/10.3390/ma15082855

ABS BOLT SAMPLE FABRICATED BY ADDITIVE MANUFACTURING METHOD INVESTIGATION OF MECHANICAL PROPERTIES

Year 2024, , 269 - 277, 03.03.2024
https://doi.org/10.17780/ksujes.1378628

Abstract

In this study, the dimensional accuracy and elasticity modulus of the bolt sample produced by the additive manufacturing (AM) were calculated. The size of the printed bolt sample was determined by comparing it with the effective modulus of elasticity and the computer-aided design (CAD). This model was designed using SolidWorks, a solid modeling. Fused deposition modeling (FDM), one of the AM methods, was used in the fabrication of the samples. Although many thermoplastic materials are used in this method, acrylonitrile butadiene styrene (ABS) type material was preferred in the of bolts in the current study. The uniaxial tensile strength of the bolt samples was observed and their flexibility was determined using stress-strain. The effective elasticity module was created by performing finite element analysis with computer simulation using ANSYS. As a result of the real-time tensile test, the highest strength value was measured as 35.258 MPa. As a result of experimental studies, it was determined that the measured tensile strength values and simulation results were compatible. This work will help understand many aspects of creating, testing, and optimizing 3D printed ABS bolts for use in real-world applications.

References

  • Alafaghani, A., Qattawi, A., & Ablat, M. A. (2017). Design Consideration for Additive Manufacturing: Fused Deposition Modelling. Open Journal of Applied Sciences. https://doi.org/10.4236/ojapps.2017.76024
  • Andrzejewski, J., Gronikowski, M., & Aniśko, J. (2022). A Novel Manufacturing Concept of LCP Fiber-Reinforced GPET-Based Sandwich Structures With an FDM 3d-Printed Core. Materials. https://doi.org/10.3390/ma15155405
  • Arif, M. F., Kumar, S., Varadarajan, K. M., & Cantwell, W. (2018). Performance of Biocompatible PEEK Processed by Fused Deposition Additive Manufacturing. Materials & Design. https://doi.org/10.1016/j.matdes.2018.03.015
  • Cattenone, A., Morganti, S., Alaimo, G., & Auricchio, F. (2018). Finite Element Analysis of Additive Manufacturing Based on Fused Deposition Modeling: Distortions Prediction and Comparison With Experimental Data. Journal of Manufacturing Science and Engineering. https://doi.org/10.1115/1.4041626
  • Chacón, J. M., Caminero, M. A., Plaza, E. G., & Núñez, P. J. (2017). Additive Manufacturing of PLA Structures Using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties And their Optimal Selection. Materials & Design. https://doi.org/10.1016/j.matdes.2017.03.065
  • Durão, L. F. C. S., Barkoczy, R., Zancul, E. de S., Ho, L. L., & Bonnard, R. (2019). Optimizing Additive Manufacturing Parameters for the Fused Deposition Modeling Technology Using a Design of Experiments. Progress in Additive Manufacturing. https://doi.org/10.1007/s40964-019-00075-9
  • Goh, G. D., Yap, Y. L., Tan, H. K. J., Sing, S. L., & Yeong, W. Y. (2019). Process–Structure–Properties in Polymer Additive Manufacturing via Material Extrusion: A Review. Critical Reviews in Solid State and Material Sciences. https://doi.org/10.1080/10408436.2018.1549977
  • Jiang, J., Xu, X., & Stringer, J. (2018). Support Structures for Additive Manufacturing: A Review. Journal of Manufacturing and Materials Processing. https://doi.org/10.3390/jmmp2040064
  • Li, M., Lü, T., Dai, J., Jia, X., Gu, X., & Taguchi, D. (2020). Microstructure and Mechanical Properties of 308L Stainless Steel Fabricated by Laminar Plasma Additive Manufacturing. Materials Science and Engineering A. https://doi.org/10.1016/j.msea.2019.138523
  • Magazine, R., Bochove, B. van, Borandeh, S., & Seppälä, J. (2022). 3D Inkjet-Printing of Photo-Crosslinkable Resins for Microlens Fabrication. Additive Manufacturing. https://doi.org/10.1016/j.addma.2021.102534
  • Meng, L., McWilliams, B., Jarosinski, W., Park, H.-Y., Jung, Y., Lee, J.-H., & Zhang, J. (2020). Machine Learning in Additive Manufacturing: A Review. Jom. https://doi.org/10.1007/s11837-020-04155-y
  • Nieto, D. M., & Molina, S. I. (2019). Large-Format Fused Deposition Additive Manufacturing: A Review. Rapid Prototyping Journal. https://doi.org/10.1108/rpj-05-2018-0126
  • Prakash, K. S., Nancharaih, T., & Rao, V. V. S. (2018). Additive Manufacturing Techniques in Manufacturing -an Overview. Materials Today Proceedings. https://doi.org/10.1016/j.matpr.2017.11.642
  • Singh, S., Ramakrishna, S., & Singh, R. (2017). Material Issues in Additive Manufacturing: A Review. Journal of Manufacturing Processes. https://doi.org/10.1016/j.jmapro.2016.11.006
  • Turan, S. R., Ülkir, O., Kuncan, M., & Buldu, A. (2022). Stereolithografi Eklemeli İmalat Yöntemleriyle Farklı Doluluk Oranlarında Üretilen Numunelerin Mekanik Özelliklerinin İncelenmesi. International Journal of 3D Printing Technologies and Digital Industry. https://doi.org/10.46519/ij3dptdi.1138450
  • Ulkir, O. (2023). Conductive Additive Manufactured Acrylonitrile Butadiene Styrene Filaments: Statistical Approach to Mechanical and Electrical Behaviors. 3D Printing and Additive Manufacturing. https://doi.org/10.1089/3dp.2022.0287
  • Vahed, R., Rajani, H. R. Z., & Milani, A. S. (2022). Can a Black-Box AI Replace Costly DMA Testing?—A Case Study on Prediction and Optimization of Dynamic Mechanical Properties of 3D Printed Acrylonitrile Butadiene Styrene. Materials. https://doi.org/10.3390/ma15082855
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Material Production Technologies
Journal Section Mechanical Engineering
Authors

Muhammed Tayyip Koçak 0000-0003-2276-2658

Mehmet Said Bayraklılar 0000-0002-5365-4441

Osman Ülkir 0000-0002-1095-0160

Publication Date March 3, 2024
Submission Date October 19, 2023
Acceptance Date January 15, 2024
Published in Issue Year 2024

Cite

APA Koçak, M. T., Bayraklılar, M. S., & Ülkir, O. (2024). EKLEMELİ İMALAT YÖNTEMİYLE ÜRETİLEN ABS CIVATA NUMUNESİNİN MEKANİK ÖZELLİKLERİNİN İNCELENMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(1), 269-277. https://doi.org/10.17780/ksujes.1378628