Research Article
BibTex RIS Cite

THE EFFECT OF IMMOBILIZED ENZYME ON TEXTILE WASTEWATER

Year 2024, , 287 - 292, 03.03.2024
https://doi.org/10.17780/ksujes.1387514

Abstract

Textile wastewater has a complex composition characterized by high dye content and chemical oxygen demand. Therefore, textile wastewaters have serious environmental impacts, such as aesthetic degradation, and carcinogenic properties. Treatment and the recovery of textile wastewater are important due to their high volume and toxicity. The effects of peroxidase enzyme immobilized on magnetic chitosan-clay beads of synthetic textile wastewater were investigated in a batch reactor. System performance was determined by chemical oxygen demand (COD) and color. The batch reactor was operated in three different pH (5, 7, 10), temperatures (25, 35, 45 °C), and reaction times (0-5-10-20-30 min.) with synthetic textile wastewater. As a result, COD and color removal efficiencies were determined as 44% and 56%, respectively, corresponding effluent concentrations are 1442 mg/L, 450 Pt-Co. The results of this study show that using the enzyme immobilization process is an effective method to remove color and COD concentration from textile wastewater.

Project Number

2021/2-1 M(YLS)

References

  • Abid, O. U. R., Ayaz, M., Rehman, W., Mehdi, K., Ali, A., Wadood, A., ... & Qureshi, M. T. (2016). Synthesis, Enzyme Inhibition, and Molecular Docking Studies of Hydrazones from Dichlorophenylacetic Acids. Journal of the Chinese Chemical Society, 63(12), 1015-1021.
  • Adamczak, M., & Krishna, S. H. (2004). Strategies for improving enzymes for efficient biocatalysis. Food Technology and Biotechnology, 42(4), 251-264.
  • Aydemir, T., & Güler, S. (2015). Characterization and immobilization of Trametes versicolor laccase on magnetic chitosan–clay composite beads for phenol removal. Artificial Cells, Nanomedicine, and Biotechnology, 43(6), 425-432.
  • Ayranpınar, i., (2022) Comparison of peroxidase enzyme and free peroxidase enzyme immobilized on magnetic chitosan clay beads and application to waste leakage anaerobic membrane bioreactor (AnMBR) outlet water.57s.
  • Bhimani, H. B. (2011). Bacterial degradation of Azo Dyes and its derivatives (Doctoral dissertation, Saurashtra University).
  • Bommarius, A. S., & Riebel-Bommarius, B. R. (2004). Biocatalysis: fundamentals and applications. John Wiley & Sons.
  • Cao, L. (2005). Immobilised enzymes: science or art?. Current Opinion in Chemical Biology, 9(2), 217-226.
  • Celebi, M., Kaya, M. A., Altikatoglu, M., & Yildirim, H. (2013). Enzymatic decolorization of anthraquinone and diazo dyes using horseradish peroxidase enzyme immobilized onto various polysulfide supports. Applied Biochemistry and Biotechnology, 171, 716-730.
  • Cırık, K., & Çınar, Ö. (2010) Parameters Affecting Anaerobic Color Removal of Textile Wastewaters: An Overview.
  • Darwesh, O.M., Matter, I. A., & Eida, M. F. (2019). Development of peroxidase enzyme immobilized magnetic nanoparticles for bioremediation of textile wastewater dye. Journal of Environmental Chemical Engineering, 7(1), 102-805.
  • G.K. Kouassi, J. Irudayaraj, G. McCarty (2005), Activity of glucose oxidase functionalized onto magnetic nanoparticles, Biomagn. Res. Technol. 3 (1), (2005) 1, https://doi.org/10.1186/1477-044X-3-1.
  • H.B. Bhimani, (2011). Bacterial Degradation of Azo Dyes and its Derivatives, Saurashtra University. Han, F., (2020). Ferrosen küpeli çitosanın enzim immobilizasyonu Doktora Tezi. Medeniyet Üniversitesi Fen Bilimleri Enstitüsü. İstanbul, 47.s.
  • Han, G., Chung, T.-S., Weber, M., Maletzko, C., (2018). Low-pressure nanofiltration hollow fiber membranes for effective fractionation of dyes and inorganic salts in textile wastewater. Environ. Sci. Technol. 52, 3676–3684.
  • Imtiazuddin, S. M., Mumtaz, M., & Mallick, K. A. (2012). Pollutants of wastewater characteristics in textile industries. J Basic App Sci, 8, 554-556.
  • L. Cao, (2005). Immobilised enzymes: science or art? Curr. Opin. Chem. Boil. 9 (2), 217–226, https://doi.org/10.1016/j.cbpa.2005.02.014.
  • M. Adamczak, S.H. Krishna, (2004). Strategies for improving enzymes for efficient biocatalysis, Food Technol. Biotechnol. 42 (4), 251–264.
  • M. Sarno, M. Iuliano, M. Polichetti, P. Ciambelli, (2017). High activity and selectivity immobilized lipase on Fe3O4 nanoparticles for banana flavour synthesis, Proc. Biochem. 56, 98–108, https://doi.org/10.1016/j.procbio.2017.02.004.
  • R.A. Sheldon, (2007). Enzyme immobilization: the quest for optimum performance, Adv. Synth. Catal. 349 (8,9), 1289–1307, https://doi.org/10.1002/adsc. 200700082.
  • S. Imtiazuddin, M. Mumtaz, K.A. Mallick, (2012). Pollutants of wastewater characteristics in textile industries, J. Bas. Appl. Sci. 8, 554–556, https://doi.org/10.6000/ 1927-5129.2012.08.02.47.
  • S. Shaw, P. Murthy, (2011). The effect of shape factor on the magnetic targeting in the permeable microvessel with two-phase Casson fluid model, J. Nanotechnol. Engin. Med. 2 (4), 041003, https://doi.org/10.1115/1.4005675.
  • S.A. Mohamed, M.H. Al-Harbi, Y.Q. Almulaiky, I.H. Ibrahim, R.M. El-Shishtawy, (2017). Immobilization of horseradish peroxidase on Fe3O4 magnetic nanoparticles, Electron. J. Biotechnol. 27, 84–90, https://doi.org/10.1016/j.ejbt.2017.03.010.
  • Sekuljica, N., Prlainović, N., Lukić, N. M., Jakovljević, A. M., Grbavčić, S., Mijin, D., & Knežević-Jugović, Z. (2015). Immobilization of peroxidase from fresh horseradish extract for anthraquinone dye decolorization. Zaštita materijala, 56(3), 335-339.
  • Sheldon, R. A. (2007). Enzyme immobilization: the quest for optimum performance. Advanced Synthesis & Catalysis, 349(8‐9), 1289-1307.
  • Sökmen, B., Yılmazoğlu, B., (2017) Tirozinaz enziminin giresun yöresinde yetişen yenilebilir kanlıca mantarından saflaştırılması ve karakterizasyonu. Karadeniz Teknik Üniveritesi Fen Bilimleri Dergisi, Trabzon, 8, 10-23.
  • Sun, F., Sun, B., Hu, J., He, Y., Wu, W., (2015). Organics and nitrogen removal from textile auxiliaries wastewater with A2O-MBR in a pilot-scale. J. Hazard. Mater. 286, 416–424.
  • W. Wu, Q. He, C. Jiang, (2008). Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies, Nanosc. Res. Let. 3 (11), 397, https://doi.org/ 10.1002/chin.200924219.
  • Weisburger, J. H. (2002). Comments on the history of eight commercial dyes and heterocyclic amines in public health. Muta. Res., 506, 9-20. Y.Y. Sultan, M.A. Ali, O.M. Darwesh, M.A. Embaby, D.A. Marrez, (2016). Influence of nitrogen source in culture media on antimicrobial activity of Microcoleus lacustris and Oscillatoria rubescens, Res. J. Pharm. Biol. Chem. Sci. 7 (2), 1444–1452.

İMMOBİLİZE ENZİMİN TEKSTİL ATIK SULARINA ETKİSİ

Year 2024, , 287 - 292, 03.03.2024
https://doi.org/10.17780/ksujes.1387514

Abstract

Tekstil atıksuları, yüksek boya içeriği ve kimyasal oksijen ihtiyacı ile karakterize edilen karmaşık bir bileşime sahiptir. Bu nedenle tekstil atıksuları estetik bozulma ve kanserojen özellikler gibi ciddi çevresel etkilere sahiptir. Tekstil atık sularının arıtılması ve geri kazanılması, yüksek hacimleri ve toksisiteleri nedeniyle önemlidir. Sentetik tekstil atıksularının manyetik kitosan-kil tanecikleri üzerine immobilize edilen peroksidaz enziminin etkileri kesikli reaktörde araştırılmıştır. Sistem performansı kimyasal oksijen ihtiyacı (KOİ) ve renk ile belirlendi. Kesikli reaktör, sentetik tekstil atıksuyu ile üç farklı pH (5, 7, 10), sıcaklık (25, 35, 45 °C) ve reaksiyon süresinde (0-5-10-20-30 dk.) çalıştırılmıştır. Sonuç olarak KOİ ve renk giderme verimleri sırasıyla %44 ve %56 olarak belirlenmiş olup, buna karşılık gelen atık su konsantrasyonları 1442 mg/L, 450 Pt-Co' dur. Bu çalışmanın sonuçları, enzim immobilizasyon prosesinin tekstil atıksularından renk ve KOİ konsantrasyonunu gidermek için etkili bir yöntem olduğunu göstermektedir.

Project Number

2021/2-1 M(YLS)

Thanks

This work was funded by the Scientific Research Project Coordination Unit of Kahramanmaras Sutcu Imam University, Turkey (Project No: 2021/2-1 M(YLS)).

References

  • Abid, O. U. R., Ayaz, M., Rehman, W., Mehdi, K., Ali, A., Wadood, A., ... & Qureshi, M. T. (2016). Synthesis, Enzyme Inhibition, and Molecular Docking Studies of Hydrazones from Dichlorophenylacetic Acids. Journal of the Chinese Chemical Society, 63(12), 1015-1021.
  • Adamczak, M., & Krishna, S. H. (2004). Strategies for improving enzymes for efficient biocatalysis. Food Technology and Biotechnology, 42(4), 251-264.
  • Aydemir, T., & Güler, S. (2015). Characterization and immobilization of Trametes versicolor laccase on magnetic chitosan–clay composite beads for phenol removal. Artificial Cells, Nanomedicine, and Biotechnology, 43(6), 425-432.
  • Ayranpınar, i., (2022) Comparison of peroxidase enzyme and free peroxidase enzyme immobilized on magnetic chitosan clay beads and application to waste leakage anaerobic membrane bioreactor (AnMBR) outlet water.57s.
  • Bhimani, H. B. (2011). Bacterial degradation of Azo Dyes and its derivatives (Doctoral dissertation, Saurashtra University).
  • Bommarius, A. S., & Riebel-Bommarius, B. R. (2004). Biocatalysis: fundamentals and applications. John Wiley & Sons.
  • Cao, L. (2005). Immobilised enzymes: science or art?. Current Opinion in Chemical Biology, 9(2), 217-226.
  • Celebi, M., Kaya, M. A., Altikatoglu, M., & Yildirim, H. (2013). Enzymatic decolorization of anthraquinone and diazo dyes using horseradish peroxidase enzyme immobilized onto various polysulfide supports. Applied Biochemistry and Biotechnology, 171, 716-730.
  • Cırık, K., & Çınar, Ö. (2010) Parameters Affecting Anaerobic Color Removal of Textile Wastewaters: An Overview.
  • Darwesh, O.M., Matter, I. A., & Eida, M. F. (2019). Development of peroxidase enzyme immobilized magnetic nanoparticles for bioremediation of textile wastewater dye. Journal of Environmental Chemical Engineering, 7(1), 102-805.
  • G.K. Kouassi, J. Irudayaraj, G. McCarty (2005), Activity of glucose oxidase functionalized onto magnetic nanoparticles, Biomagn. Res. Technol. 3 (1), (2005) 1, https://doi.org/10.1186/1477-044X-3-1.
  • H.B. Bhimani, (2011). Bacterial Degradation of Azo Dyes and its Derivatives, Saurashtra University. Han, F., (2020). Ferrosen küpeli çitosanın enzim immobilizasyonu Doktora Tezi. Medeniyet Üniversitesi Fen Bilimleri Enstitüsü. İstanbul, 47.s.
  • Han, G., Chung, T.-S., Weber, M., Maletzko, C., (2018). Low-pressure nanofiltration hollow fiber membranes for effective fractionation of dyes and inorganic salts in textile wastewater. Environ. Sci. Technol. 52, 3676–3684.
  • Imtiazuddin, S. M., Mumtaz, M., & Mallick, K. A. (2012). Pollutants of wastewater characteristics in textile industries. J Basic App Sci, 8, 554-556.
  • L. Cao, (2005). Immobilised enzymes: science or art? Curr. Opin. Chem. Boil. 9 (2), 217–226, https://doi.org/10.1016/j.cbpa.2005.02.014.
  • M. Adamczak, S.H. Krishna, (2004). Strategies for improving enzymes for efficient biocatalysis, Food Technol. Biotechnol. 42 (4), 251–264.
  • M. Sarno, M. Iuliano, M. Polichetti, P. Ciambelli, (2017). High activity and selectivity immobilized lipase on Fe3O4 nanoparticles for banana flavour synthesis, Proc. Biochem. 56, 98–108, https://doi.org/10.1016/j.procbio.2017.02.004.
  • R.A. Sheldon, (2007). Enzyme immobilization: the quest for optimum performance, Adv. Synth. Catal. 349 (8,9), 1289–1307, https://doi.org/10.1002/adsc. 200700082.
  • S. Imtiazuddin, M. Mumtaz, K.A. Mallick, (2012). Pollutants of wastewater characteristics in textile industries, J. Bas. Appl. Sci. 8, 554–556, https://doi.org/10.6000/ 1927-5129.2012.08.02.47.
  • S. Shaw, P. Murthy, (2011). The effect of shape factor on the magnetic targeting in the permeable microvessel with two-phase Casson fluid model, J. Nanotechnol. Engin. Med. 2 (4), 041003, https://doi.org/10.1115/1.4005675.
  • S.A. Mohamed, M.H. Al-Harbi, Y.Q. Almulaiky, I.H. Ibrahim, R.M. El-Shishtawy, (2017). Immobilization of horseradish peroxidase on Fe3O4 magnetic nanoparticles, Electron. J. Biotechnol. 27, 84–90, https://doi.org/10.1016/j.ejbt.2017.03.010.
  • Sekuljica, N., Prlainović, N., Lukić, N. M., Jakovljević, A. M., Grbavčić, S., Mijin, D., & Knežević-Jugović, Z. (2015). Immobilization of peroxidase from fresh horseradish extract for anthraquinone dye decolorization. Zaštita materijala, 56(3), 335-339.
  • Sheldon, R. A. (2007). Enzyme immobilization: the quest for optimum performance. Advanced Synthesis & Catalysis, 349(8‐9), 1289-1307.
  • Sökmen, B., Yılmazoğlu, B., (2017) Tirozinaz enziminin giresun yöresinde yetişen yenilebilir kanlıca mantarından saflaştırılması ve karakterizasyonu. Karadeniz Teknik Üniveritesi Fen Bilimleri Dergisi, Trabzon, 8, 10-23.
  • Sun, F., Sun, B., Hu, J., He, Y., Wu, W., (2015). Organics and nitrogen removal from textile auxiliaries wastewater with A2O-MBR in a pilot-scale. J. Hazard. Mater. 286, 416–424.
  • W. Wu, Q. He, C. Jiang, (2008). Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies, Nanosc. Res. Let. 3 (11), 397, https://doi.org/ 10.1002/chin.200924219.
  • Weisburger, J. H. (2002). Comments on the history of eight commercial dyes and heterocyclic amines in public health. Muta. Res., 506, 9-20. Y.Y. Sultan, M.A. Ali, O.M. Darwesh, M.A. Embaby, D.A. Marrez, (2016). Influence of nitrogen source in culture media on antimicrobial activity of Microcoleus lacustris and Oscillatoria rubescens, Res. J. Pharm. Biol. Chem. Sci. 7 (2), 1444–1452.
There are 27 citations in total.

Details

Primary Language English
Subjects Environmental Engineering (Other), Wastewater Treatment Processes, Environmental and Sustainable Processes
Journal Section Environmental Engineering
Authors

İrem Ayranpınar 0000-0001-8132-3490

Melike Kozak 0000-0001-6985-3587

Serdar Göçer 0000-0003-0443-8045

Kevser Cırık 0000-0002-1756-553X

Project Number 2021/2-1 M(YLS)
Publication Date March 3, 2024
Submission Date November 7, 2023
Acceptance Date December 8, 2023
Published in Issue Year 2024

Cite

APA Ayranpınar, İ., Kozak, M., Göçer, S., Cırık, K. (2024). THE EFFECT OF IMMOBILIZED ENZYME ON TEXTILE WASTEWATER. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(1), 287-292. https://doi.org/10.17780/ksujes.1387514