Research Article
BibTex RIS Cite

KENEVİR TOHUMU YAĞI VE NAOH-KOH KULLANILARAK ÜRETİLEN METİL ESTERLERİN MOTORİNLE HARMANLANMASI İLE ELDE EDİLEN BİYOYAKITLARIN KİNEMATİK VİSKOZİTE DEĞERLERİNİN KARŞILAŞTIRILMASI

Year 2024, , 539 - 553, 03.06.2024
https://doi.org/10.17780/ksujes.1405375

Abstract

Fosil yakıtların tükenme tehlikesi, bu yakıtlardan enerji üretimi ile havaya salınan sera gazlarının küresel iklim değişikliğine olumsuz etkileri ve ekolojik dengenin sarsılması nedenlerinden dolayı alternatif yakıtların kullanımı hayati önem kazanmıştır. Alternatif yakıtlardan biri olan biyodizel; uygun emisyon ve yanma profili, karbon nötr özelliği, yüksek parlama noktası, çok yönlü kullanımı nedeniyle son zamanlarda büyük ilgi görmektedir. Bu çalışmada, kenevir yağının, sodyum hidroksit ve potasyum hidroksit varlığında, metanol ile reaksiyonu sonucunda biyodizel üretimi gerçekleştirilmiştir. Her iki katalizörün en uygun biyodizel sentezi için katalizör ağırlığı (0,4–1,0 %ağ.), alkol:yağ molar oranı (3:1–9:1), reaksiyon sıcaklığı (30–60°C) ve reaksiyon süresi (30–75 dk.) parametreleri klasik metot kullanılarak optimize edilmiştir. Sodyum hidroksit ile yapılan denemelerde %94.89 biyodizel verimi elde edilirken, potasyum hidroksit kullanılarak gerçekleştirilen çalışmada %95,91 biyodizel verimi sağlanmıştır. Optimum sonuçlarda üretilen yakıtlar dizel yakıtı ile hacimsel olarak %10, %20, %30, %40, %50, %60, %70, %80 ve %90 oranlarında harmanlanmış ve karışım yakıtların 40°C’de kinematik viskozite değerleri belirlenmiştir. Sonuç olarak, karışım yakıtların ASTM D6751 ve EN 14214 standartlarına uygun olduğu ve sodyum hidroksit ile üretilen yakıtların potasyum hidroksitle elde edilen yakıtlara göre daha düşük kinematik viskoziteye sahip olduğu tespit edilmiştir.

Supporting Institution

TÜBİTAK

Project Number

1919B012205988

Thanks

TÜBİTAK 2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı kapsamında verilen proje desteğine teşekkür ederiz (Proje No: 1919B012205988).

References

  • Abba, E.C., Nwakuba, N.R., Obasi, S.N., & Enem, J.I. (2017). Effect of reaction time on the yield of biodiesel from Neem seed oil. American Journal of Energy Science, 4(2), 5-9.
  • Abbah, E.C., Nwandikom, G.I., Egwuonwu, C.C., & Nwakuba, N.R. (2016). Effect of reaction temperature on the yield of biodiesel from neem seed oil. American Journal of Energy Science, 3(3), 16–20.
  • Afif, M.K., & Biradar, C.H. (2019). Production of biodiesel from Cannabis sativa (Hemp) seed oil and its performance and emission characteristics on DI engine fueled with biodiesel blends. Internatıonal Journal of Engıneerıng Research & Technology, 6(8), 246-253.
  • Ahmad, M., Khan, M.A., Zafar, M., & Sultana, S. (2012). Practical handbook on biodiesel production and properties. CRC Press.
  • Al-Sakkari, E.G., El-Sheltawy, S.T., Soliman, A., & Ismail, I. (2018). Transesterification of low FFA waste vegetable oil using homogeneous base catalyst for biodiesel production: optimization, kinetics and product stability. Journal of Advanced Chemical Sciences, 586-592. https://doi.org/10.30799/jacs.195.18040305.
  • Alcheikh, A. (2015). Advantages and challenges of hemp biodiesel production. Faculty of Engineering and Sustainable Development, Master’s thesis. Gavle University: Gävle, Sweden.
  • Anani, N. (2020). Renewable energy technologies and resources. Artech House, Norwood.
  • Anwar, M. (2021). Biodiesel feedstocks selection strategies based on economic, technical, and sustainable aspects. Fuel, 283, 119204. https://doi.org/10.1016/j.fuel.2020.119204.
  • Aslan, V., & Eryilmaz, T. (2020). Polynomial regression method for optimization of biodiesel production from black mustard (Brassica nigra L.) seed oil using methanol, ethanol, NaOH, and KOH. Energy, 209, 118386. https://doi.org/10.1016/j.energy.2020.118386.
  • Atadashi, I.M., Aroua, M.K., Aziz, A.A., & Sulaiman, N.M.N. (2013). The effects of catalysts in biodiesel production: A review. Journal of industrial and engineering chemistry, 19(1), 14-26. http://dx.doi.org/10.1016/j.jiec.2012.07.009.
  • Bhuiya, M.M.K., Rasul, M.G., Khan, M.M.K., Ashwath, N., Azad, A.K., & Hazrat, M.A. (2016). Prospects of 2nd generation biodiesel as a sustainable fuel–Part 2: Properties, performance and emission characteristics. Renewable and Sustainable Energy Reviews, 55, 1129–1146. http://dx.doi.org/10.1016/j.rser.2015.09.086.
  • Carlucci, C. (2022). An overview on the production of biodiesel enabled by continuous flow methodologies. Catalysts, 12(7), 717. https://doi.org/10.3390/ catal12070717.
  • Chanakaewsomboon, I., Tongurai, C., Photaworn, S., Kungsanant, S., & Nikhom, R. (2020). Investigation of saponification mechanisms in biodiesel production: Microscopic visualization of the effects of FFA, water and the amount of alkaline catalyst. Journal of Environmental Chemical Engineering, 8(2), 103538. https://doi.org/10.1016/ j.jece.2019.103538.
  • Chozhavendhan, S., Singh, M.V.P., Fransila, B., Kumar, R.P., & Devi, G.K. (2020). A review on influencing parameters of biodiesel production and purification processes. Current Research in Green and Sustainable Chemistry, 1, 1-6. https://doi.org/10.1016/j.crgsc.2020.04.002.
  • Coniwanti, P., Surliadji, L., & Triandini, D. (2019, September). The effects of catalysts type, molar ratio, and transesterification time in producing biodiesel from beef tallow. In IOP Conference Series: Materials Science and Engineering (Vol. 620, No. 1, p. 012019). IOP Publishing. http://dx.doi.org/10.1088/1757-899X/620/1/012019.
  • Demirbas, A. (2016). Biodiesel from corn germ oil catalytic and non-catalytic supercritical methanol transesterification. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(13), 1890-1897. https://doi.org/10.1080/15567036.2015.1004388.
  • Efavi, J. K., Dodoo-Arhin, D., Kanbogtah, D., Apalangya, V., Nyankson, E., Tiburu, E. K., Dodoo-Arhin, D., Onwona-Agyeman, B., & Yaya, A. (2018). The effect of NaOH catalyst concentration and extraction time on the yield and properties of Citrullus vulgaris seed oil as a potential biodiesel feed stock. South African Journal of Chemical Engineering, 25(1), 98-102. https://doi.org/10.1016/j.sajce.2018.03.002.
  • Elango, R.K., Sathiasivan, K., Muthukumaran, C., Thangavelu, V., Rajesh, M., & Tamilarasan, K. (2019). Transesterification of castor oil for biodiesel production: Process optimization and characterization. Microchemical Journal, 145, 1162–1168. https://doi.org/10.1016/j.microc.2018.12.039.
  • Folayan, A.J., Anawe, P.A.L., Aladejare, A.E., & Ayeni, A.O. (2019). Experimental investigation of the effect of fatty acids configuration, chain length, branching and degree of unsaturation on biodiesel fuel properties obtained from lauric oils, high-oleic and high-linoleic vegetable oil biomass. Energy Reports, 5, 793–806. https://doi.org/10.1016/j.egyr.2019.06.013.
  • Ghazali, W.N.M.W., Mamat, R., Masjuki, H.H., & Najafi, G. (2015). Effects of biodiesel from different feedstocks on engine performance and emissions: A review. Renewable and Sustainable Energy Reviews, 51, 585–602. http://dx.doi.org/10.1016/j.rser.2015.06.031.
  • Gupta, A.R, Jalan, A.P., Rathod, V.K. (2018). Solar energy as a process intensification tool for the biodiesel production from hempseed oil. Energy Conversion and Management, 171, 126-132. https://doi.org/10.1201/b18947-7.
  • Hassan, A.A., Erwa, I.Y., Salim, R.A., Ishag, O.A.O., & Ahmed, M.A. (2023) Production of Biodiesel from Waste Cooking Oil Using KOH/Al2O3 as a Heterogeneous Catalyst. https://doi.org/10.18596/jotcsa.1163670.
  • Hossain, A.B.M.S., Boyce, A.N., Salleh, A., & Chandran, S. (2010). Impacts of alcohol type, ratio and stirring time on the biodiesel production from waste canola oil. African Journal of Agricultural Research, 5(14), 1851-1859. https://doi.org/10.5897/AJAR09.135.
  • Iriondo-DeHond, A., Alonso-Esteban, J.I., Gallego-Barceló, P., García, P., Abalo, R., & Castillo, M. (2023). Nutrition security of hemp for human consumption. In P. Ferranti (Ed.), Sustainable food science - A comprehensive approach (pp. 60–88). Netherlands: Elsevier.
  • Jain, A., Bora, B. J., Kumar, R., Sharma, P., Deepanraj, B., Irshad, K., & Ravikiran, C. (2023). Application of hybrid Taguchi L16 and desirability for model prediction and optimization in assessment of the performance of a novel Water Hyacinth biodiesel run diesel engine. Fuel, 339, 127377. https://doi.org/10.1016/j.fuel.2022.127377.
  • Johnson, R. (2018). Hemp as an agricultural commodity (pp. 1–29). Washington, DC, USA: Congressional Research Service.
  • Kavalli, K., Hebbar, G.S., Shubha, J.P., Adil, S.F., Khan, M., Hatshan, M.R., Almutairi, A.M., & Shaik, B. (2022). Green Synthesized ZnO Nanoparticles as Biodiesel Blends and Their Effect on the Performance and Emission of Greenhouse Gases. Molecules, 27(9), 2845. https://doi.org/10.3390/molecules27092845.
  • Khan, I. A., Prasad, N., Pal, A., & Yadav, A.K. (2020). Efficient production of biodiesel from Cannabis sativa oil using intensified transesterification (hydrodynamic cavitation) method. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(20), 2461-2470. https://doi.org/10.1080/15567036.2019.1607946.
  • Kuppili, S.K., Kumar, A., & Kim, D. S. (2020). Biodiesel Properties Depending on Blends and Feedstocks: 155Cloud Point, Kinematic Viscosity, and Flash Point. In H. Joo, A. Kumar (Eds.), World Biodiesel Policies and Production (pp. 155-174). CRC Press.
  • Leung, D.Y., Wu,X., & Leung, M.K.H. (2010). A review on biodiesel production using catalyzed transesterification. Applied energy, 87(4), 1083-1095. https://doi.org/10.1016/j.apenergy.2009.10.006.
  • Lin, C.Y., & Lin, Y.W. (2012). Fuel characteristics of biodiesel produced from a high-acid oil from soybean soapstock by supercritical-methanol transesterification. Energies, 5(7), 2370–2380. https://doi.org/10.3390/ en5072370.
  • Liu, Y., & Ren, J. (2021). Overview of sustainability, sustainable development and sustainability assessment: Concepts and methods. In Energy Systems Evaluation (Volume 1) (pp. 1–29). Springer, Cham.
  • Long, F., Liu, W., Jiang, X., Zhai, Q., Cao, X., Jiang, J., & Xu, J. (2021). State-of-the-art technologies for biofuel production from triglycerides: A review. Renewable and Sustainable Energy Reviews, 148, 111269. https://doi.org/10.1016/j.rser.2021.111269.
  • Martínez, G., Sánchez, N., Encinar, J.M., & González, J.F. (2014). Fuel properties of biodiesel from vegetable oils and oil mixtures. Influence of methyl esters distribution. Biomass and Bioenergy, 63, 22–32. http://dx.doi.org/10.1016/j.biombioe.2014.01.034.
  • Mashkour, A.P.D.M.A., & Mohammed, L.A.A. (2017). Impact of mixing speed & reaction time on the biodiesel production from sunflower oil. Association of Arab Universities Journal of Engineering Sciences, 24(3), 101-134.
  • Musa, I.A. (2016). The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egyptian Journal of Petroleum, 25(1), 21-31. http://dx.doi.org/10.1016/j.ejpe.2015.06.007.
  • Nguyen, V.N., Sharma, P., Kumar, A., Pham, M.T., Le, H.C., Truong, T.H., & Cao, D.N. (2023). Optimization of biodiesel production from Nahar oil using Box-Behnken design, ANOVA and grey wolf optimizer. International Journal of Renewable Energy Development, 12(4). https://doi.org/10.14710/ijred.2023.54941.
  • Oguz, H., & Tolu, M.C. (2023). Investigation of fuel properties of biodiesel produced from hemp seed oil. International Journal of Automotive Engineering and Technologies, 12(1), 1-8.
  • Önder, F., Ağır, H. (2023). Panel Econometric Analysis of the Relationship between Energy Consumption and Economic Growth: The Case of the Bric Countries. Türk Tarım ve Doğa Bilimleri Dergisi, 10(4), 922–932. https://doi.org/10.30910/turkjans.1355868.
  • Pablo-Romero, M.D.P., & Sánchez-Braza, A. (2015). Productive energy use and economic growth: Energy, physical and human capital relationships. Energy Economics, 49, 420–429. http://dx.doi.org/10.1016/j.eneco.2015.03.010.
  • Phankosol, S., & Krisnangkura, K. (2015). Estimation kinematic viscosity of biodiesel produced by ethanolysis. Engineering Transactions: A Research Publication of Mahanakorn University of Technology, 18(2), 96-99.
  • Phipps, B., & Schluttenhofer, C. (2022). Perspectives of industrial hemp cultivation. In M. Pojić, B.K. Tiwari (Eds.), Industrial hemp: Food and nutraceutical applications (pp. 1–36). Academic Press.
  • Ramírez-Verduzco, L.F., Rodríguez-Rodríguez, J.E., & del Rayo Jaramillo-Jacob, A. (2012). Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel, 91(1), 102–111. https://doi.org/10.1016/j.fuel.2011.06.070.
  • Rashid, U., Bhatti, S.G., Ansari, T.M., Yunus, R., & Ibrahim, M. (2016). Biodiesel production from Cannabis sativa oil from Pakistan. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(6), 865-875. https://doi.org/10.1080/15567036.2013.803179.
  • Rashid, U., & Anwar, F. (2008). Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel, 87(3), 265-273. http://dx.doi.org/10.1016/j.fuel.2007.05.00.
  • Sáez-Bastante, J., Fernández-García, P., Saavedra, M., López-Bellido, L., Dorado, M.P., & Pinzi, S. (2016). Evaluation of Sinapis alba as feedstock for biodiesel production in Mediterranean climate. Fuel, 184, 656–664. http://dx.doi.org/10.1016/j.fuel.2016.07.022.
  • Said, Z., Sharma, P., Nhuong, Q.T.B., Bora, B.J., Lichtfouse, E., Khalid, H.M., Luque, R., Nguyen, X.P., & Hoang, A. T. (2023). Intelligent approaches for sustainable management and valorisation of food waste. Bioresource Technology, 128952. https://doi.org/10.1016/j.biortech.2023.128952.
  • Saydut, A., Kafadar, A.B., Aydin, F., Erdogan, S., Kaya, C., & Hamamci, C. (2016). Effect of homogeneous alkaline catalyst type on biodiesel production from soybean [Glycine max (L.) Merrill] oil. Indian Journal of Biotechonology, 15(4), 596–600.
  • Sharma, P., Sivaramakrishnaiah, M., Deepanraj, B., Saravanan, R., & Reddy, M. V. (2022). A novel optimization approach for biohydrogen production using algal biomass. International Journal of Hydrogen Energy. Article in press. https://doi.org/10.1016/j.ijhydene.2022.09.274.
  • Shrivastava, P., Rajak, U., Nashine, P., & Verma, T.N. (2021). Performance and emission characteristics of a compression ıgnition engine fueled with roselle and karanja biodiesel. In S.M. Sapuan, R. Nadlene, A.M. Radzi, & R.A. Ilyas (Eds.), Roselle: Production, processing, products and biocomposites (pp. 165-176). Academic Press.
  • Singh, A., He, B., Thompson, J., & Van Gerpen, J. (2006). Process optimization of biodiesel production using alkaline catalysts. Applied Engineering in Agriculture, 22(4), 597–600.
  • Small, E. (2015). Evolution and classification of Cannabis sativa (marijuana, hemp) in relation to human utilization. The botanical review, 81, 189–294. https://doi.org/10.1007/s12229-015-9157-3.
  • Stamenković, O.S., Veličković, A.V., Kostić, M.D., Joković, N.M., Rajković, K.M., Milić, P.S., & Veljković, V.B. (2015). Optimization of KOH-catalyzed methanolysis of hempseed oil. Energy Conversion and Management, 103, 235-243. http://dx.doi.org/10.1016/j.enconman.2015.06.054.
  • Strzelczyk, M., Lochynska, M., & Chudy, M. (2022). Systematics and botanical characteristics of industrial hemp Cannabis sativa L. Journal of Natural Fibers, 19(13), 5804–5826. https://doi.org/10.1080/15440478.2021.1889443.
  • Sultana, S., Khalid, A., Ahmad, M., Zuhairi, A.A., Teong, L.K., Zafar, M., & Hassan, F.U. (2014). The production, optimization, and characterization of biodiesel from a novel source: Sinapis alba L. International Journal of Green Energy, 11(3), 280-291. https://doi.org/10.1080/15435075.2013.772520.
  • Verma, P., & Sharma, M.P. (2016). Review of process parameters for biodiesel production from different feedstocks. Renewable and sustainable energy reviews, 62, 1063-1071. http://dx.doi.org/10.1016/j.rser.2016.04.054.
  • Wang, Y. (2019). Applications of rice bran oil. In L.Z. Cheong, X. Xu (Eds.), Rice bran and rice bran oil (pp. 159-168). AOCS Press.
  • Wirtshafter, D.E. (2004). Ten years of a modern hemp industry. Journal of Industrial Hemp, 9(1), 9–14. https://doi.org/10.1300/J237v09n01_03.
  • Yesilyurt, M.K., & Cesur, C. (2020). Biodiesel synthesis from Styrax officinalis L. seed oil as a novel and potential non-edible feedstock: A parametric optimization study through the Taguchi technique. Fuel, 265, 117025. https://doi.org/10.1016/j.fuel.2020.117025.
  • Yıldırım, H.H. (2019). Yenilenebilir enerji yatırımlarındaki teşviklerin yatırım performansları üzerine etkisi. Finans Ekonomi ve Sosyal Araştırmalar Dergisi, 4(3), 330–345. https://doi.org/10.29106/fesa.605785.
  • Zahan, K.A., & Kano, M. (2018). Biodiesel production from palm oil, its by-products, and mill effluent: A review. Energies, 11(8), 2132. https://doi.org/10.3390/en11082132.

COMPARISON OF KINEMATIC VISCOSITY VALUES OF BIOFUELS PRODUCED BY BLENDING METHYL ESTERS PRODUCED USING HEMP SEED OIL AND NAOH-KOH WITH DIESEL FUEL

Year 2024, , 539 - 553, 03.06.2024
https://doi.org/10.17780/ksujes.1405375

Abstract

The use of alternative fuels has become vitally important due to the danger of depletion of fossil fuels, the negative effects of greenhouse gases released into the air through energy production from these fuels on global climate change, and the disruption of ecological balance. Biodiesel, one of the alternative fuels; has recently attracted great attention due to its suitable emission and combustion profile, carbon neutral feature, high flash point, and versatile use. In this study, biodiesel was produced as a result of the reaction of hemp oil with methanol in the presence of sodium hydroxide and potassium hydroxide. For the most suitable biodiesel synthesis of both catalysts, catalyst weight (0.4–1.0 wt%), alcohol: oil molar ratio (3:1–9:1), reaction temperature (30–60 °C), and reaction time (30–75 min.) were determined. min.) parameters were optimized using the classical method. While 94,89% biodiesel yield was obtained in the trials conducted with sodium hydroxide, 95.91% biodiesel yield was achieved in the study using potassium hydroxide. The fuels produced with optimum results were blended with diesel fuel at 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% by volume, and the kinematic viscosity values of the blended fuels at 40°C were determined. As a result, it was determined that the blended fuels comply with ASTM D6751 and EN 14214 standards and that fuels produced with sodium hydroxide have lower kinematic viscosity than fuels obtained with potassium hydroxide.

Project Number

1919B012205988

References

  • Abba, E.C., Nwakuba, N.R., Obasi, S.N., & Enem, J.I. (2017). Effect of reaction time on the yield of biodiesel from Neem seed oil. American Journal of Energy Science, 4(2), 5-9.
  • Abbah, E.C., Nwandikom, G.I., Egwuonwu, C.C., & Nwakuba, N.R. (2016). Effect of reaction temperature on the yield of biodiesel from neem seed oil. American Journal of Energy Science, 3(3), 16–20.
  • Afif, M.K., & Biradar, C.H. (2019). Production of biodiesel from Cannabis sativa (Hemp) seed oil and its performance and emission characteristics on DI engine fueled with biodiesel blends. Internatıonal Journal of Engıneerıng Research & Technology, 6(8), 246-253.
  • Ahmad, M., Khan, M.A., Zafar, M., & Sultana, S. (2012). Practical handbook on biodiesel production and properties. CRC Press.
  • Al-Sakkari, E.G., El-Sheltawy, S.T., Soliman, A., & Ismail, I. (2018). Transesterification of low FFA waste vegetable oil using homogeneous base catalyst for biodiesel production: optimization, kinetics and product stability. Journal of Advanced Chemical Sciences, 586-592. https://doi.org/10.30799/jacs.195.18040305.
  • Alcheikh, A. (2015). Advantages and challenges of hemp biodiesel production. Faculty of Engineering and Sustainable Development, Master’s thesis. Gavle University: Gävle, Sweden.
  • Anani, N. (2020). Renewable energy technologies and resources. Artech House, Norwood.
  • Anwar, M. (2021). Biodiesel feedstocks selection strategies based on economic, technical, and sustainable aspects. Fuel, 283, 119204. https://doi.org/10.1016/j.fuel.2020.119204.
  • Aslan, V., & Eryilmaz, T. (2020). Polynomial regression method for optimization of biodiesel production from black mustard (Brassica nigra L.) seed oil using methanol, ethanol, NaOH, and KOH. Energy, 209, 118386. https://doi.org/10.1016/j.energy.2020.118386.
  • Atadashi, I.M., Aroua, M.K., Aziz, A.A., & Sulaiman, N.M.N. (2013). The effects of catalysts in biodiesel production: A review. Journal of industrial and engineering chemistry, 19(1), 14-26. http://dx.doi.org/10.1016/j.jiec.2012.07.009.
  • Bhuiya, M.M.K., Rasul, M.G., Khan, M.M.K., Ashwath, N., Azad, A.K., & Hazrat, M.A. (2016). Prospects of 2nd generation biodiesel as a sustainable fuel–Part 2: Properties, performance and emission characteristics. Renewable and Sustainable Energy Reviews, 55, 1129–1146. http://dx.doi.org/10.1016/j.rser.2015.09.086.
  • Carlucci, C. (2022). An overview on the production of biodiesel enabled by continuous flow methodologies. Catalysts, 12(7), 717. https://doi.org/10.3390/ catal12070717.
  • Chanakaewsomboon, I., Tongurai, C., Photaworn, S., Kungsanant, S., & Nikhom, R. (2020). Investigation of saponification mechanisms in biodiesel production: Microscopic visualization of the effects of FFA, water and the amount of alkaline catalyst. Journal of Environmental Chemical Engineering, 8(2), 103538. https://doi.org/10.1016/ j.jece.2019.103538.
  • Chozhavendhan, S., Singh, M.V.P., Fransila, B., Kumar, R.P., & Devi, G.K. (2020). A review on influencing parameters of biodiesel production and purification processes. Current Research in Green and Sustainable Chemistry, 1, 1-6. https://doi.org/10.1016/j.crgsc.2020.04.002.
  • Coniwanti, P., Surliadji, L., & Triandini, D. (2019, September). The effects of catalysts type, molar ratio, and transesterification time in producing biodiesel from beef tallow. In IOP Conference Series: Materials Science and Engineering (Vol. 620, No. 1, p. 012019). IOP Publishing. http://dx.doi.org/10.1088/1757-899X/620/1/012019.
  • Demirbas, A. (2016). Biodiesel from corn germ oil catalytic and non-catalytic supercritical methanol transesterification. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(13), 1890-1897. https://doi.org/10.1080/15567036.2015.1004388.
  • Efavi, J. K., Dodoo-Arhin, D., Kanbogtah, D., Apalangya, V., Nyankson, E., Tiburu, E. K., Dodoo-Arhin, D., Onwona-Agyeman, B., & Yaya, A. (2018). The effect of NaOH catalyst concentration and extraction time on the yield and properties of Citrullus vulgaris seed oil as a potential biodiesel feed stock. South African Journal of Chemical Engineering, 25(1), 98-102. https://doi.org/10.1016/j.sajce.2018.03.002.
  • Elango, R.K., Sathiasivan, K., Muthukumaran, C., Thangavelu, V., Rajesh, M., & Tamilarasan, K. (2019). Transesterification of castor oil for biodiesel production: Process optimization and characterization. Microchemical Journal, 145, 1162–1168. https://doi.org/10.1016/j.microc.2018.12.039.
  • Folayan, A.J., Anawe, P.A.L., Aladejare, A.E., & Ayeni, A.O. (2019). Experimental investigation of the effect of fatty acids configuration, chain length, branching and degree of unsaturation on biodiesel fuel properties obtained from lauric oils, high-oleic and high-linoleic vegetable oil biomass. Energy Reports, 5, 793–806. https://doi.org/10.1016/j.egyr.2019.06.013.
  • Ghazali, W.N.M.W., Mamat, R., Masjuki, H.H., & Najafi, G. (2015). Effects of biodiesel from different feedstocks on engine performance and emissions: A review. Renewable and Sustainable Energy Reviews, 51, 585–602. http://dx.doi.org/10.1016/j.rser.2015.06.031.
  • Gupta, A.R, Jalan, A.P., Rathod, V.K. (2018). Solar energy as a process intensification tool for the biodiesel production from hempseed oil. Energy Conversion and Management, 171, 126-132. https://doi.org/10.1201/b18947-7.
  • Hassan, A.A., Erwa, I.Y., Salim, R.A., Ishag, O.A.O., & Ahmed, M.A. (2023) Production of Biodiesel from Waste Cooking Oil Using KOH/Al2O3 as a Heterogeneous Catalyst. https://doi.org/10.18596/jotcsa.1163670.
  • Hossain, A.B.M.S., Boyce, A.N., Salleh, A., & Chandran, S. (2010). Impacts of alcohol type, ratio and stirring time on the biodiesel production from waste canola oil. African Journal of Agricultural Research, 5(14), 1851-1859. https://doi.org/10.5897/AJAR09.135.
  • Iriondo-DeHond, A., Alonso-Esteban, J.I., Gallego-Barceló, P., García, P., Abalo, R., & Castillo, M. (2023). Nutrition security of hemp for human consumption. In P. Ferranti (Ed.), Sustainable food science - A comprehensive approach (pp. 60–88). Netherlands: Elsevier.
  • Jain, A., Bora, B. J., Kumar, R., Sharma, P., Deepanraj, B., Irshad, K., & Ravikiran, C. (2023). Application of hybrid Taguchi L16 and desirability for model prediction and optimization in assessment of the performance of a novel Water Hyacinth biodiesel run diesel engine. Fuel, 339, 127377. https://doi.org/10.1016/j.fuel.2022.127377.
  • Johnson, R. (2018). Hemp as an agricultural commodity (pp. 1–29). Washington, DC, USA: Congressional Research Service.
  • Kavalli, K., Hebbar, G.S., Shubha, J.P., Adil, S.F., Khan, M., Hatshan, M.R., Almutairi, A.M., & Shaik, B. (2022). Green Synthesized ZnO Nanoparticles as Biodiesel Blends and Their Effect on the Performance and Emission of Greenhouse Gases. Molecules, 27(9), 2845. https://doi.org/10.3390/molecules27092845.
  • Khan, I. A., Prasad, N., Pal, A., & Yadav, A.K. (2020). Efficient production of biodiesel from Cannabis sativa oil using intensified transesterification (hydrodynamic cavitation) method. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(20), 2461-2470. https://doi.org/10.1080/15567036.2019.1607946.
  • Kuppili, S.K., Kumar, A., & Kim, D. S. (2020). Biodiesel Properties Depending on Blends and Feedstocks: 155Cloud Point, Kinematic Viscosity, and Flash Point. In H. Joo, A. Kumar (Eds.), World Biodiesel Policies and Production (pp. 155-174). CRC Press.
  • Leung, D.Y., Wu,X., & Leung, M.K.H. (2010). A review on biodiesel production using catalyzed transesterification. Applied energy, 87(4), 1083-1095. https://doi.org/10.1016/j.apenergy.2009.10.006.
  • Lin, C.Y., & Lin, Y.W. (2012). Fuel characteristics of biodiesel produced from a high-acid oil from soybean soapstock by supercritical-methanol transesterification. Energies, 5(7), 2370–2380. https://doi.org/10.3390/ en5072370.
  • Liu, Y., & Ren, J. (2021). Overview of sustainability, sustainable development and sustainability assessment: Concepts and methods. In Energy Systems Evaluation (Volume 1) (pp. 1–29). Springer, Cham.
  • Long, F., Liu, W., Jiang, X., Zhai, Q., Cao, X., Jiang, J., & Xu, J. (2021). State-of-the-art technologies for biofuel production from triglycerides: A review. Renewable and Sustainable Energy Reviews, 148, 111269. https://doi.org/10.1016/j.rser.2021.111269.
  • Martínez, G., Sánchez, N., Encinar, J.M., & González, J.F. (2014). Fuel properties of biodiesel from vegetable oils and oil mixtures. Influence of methyl esters distribution. Biomass and Bioenergy, 63, 22–32. http://dx.doi.org/10.1016/j.biombioe.2014.01.034.
  • Mashkour, A.P.D.M.A., & Mohammed, L.A.A. (2017). Impact of mixing speed & reaction time on the biodiesel production from sunflower oil. Association of Arab Universities Journal of Engineering Sciences, 24(3), 101-134.
  • Musa, I.A. (2016). The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egyptian Journal of Petroleum, 25(1), 21-31. http://dx.doi.org/10.1016/j.ejpe.2015.06.007.
  • Nguyen, V.N., Sharma, P., Kumar, A., Pham, M.T., Le, H.C., Truong, T.H., & Cao, D.N. (2023). Optimization of biodiesel production from Nahar oil using Box-Behnken design, ANOVA and grey wolf optimizer. International Journal of Renewable Energy Development, 12(4). https://doi.org/10.14710/ijred.2023.54941.
  • Oguz, H., & Tolu, M.C. (2023). Investigation of fuel properties of biodiesel produced from hemp seed oil. International Journal of Automotive Engineering and Technologies, 12(1), 1-8.
  • Önder, F., Ağır, H. (2023). Panel Econometric Analysis of the Relationship between Energy Consumption and Economic Growth: The Case of the Bric Countries. Türk Tarım ve Doğa Bilimleri Dergisi, 10(4), 922–932. https://doi.org/10.30910/turkjans.1355868.
  • Pablo-Romero, M.D.P., & Sánchez-Braza, A. (2015). Productive energy use and economic growth: Energy, physical and human capital relationships. Energy Economics, 49, 420–429. http://dx.doi.org/10.1016/j.eneco.2015.03.010.
  • Phankosol, S., & Krisnangkura, K. (2015). Estimation kinematic viscosity of biodiesel produced by ethanolysis. Engineering Transactions: A Research Publication of Mahanakorn University of Technology, 18(2), 96-99.
  • Phipps, B., & Schluttenhofer, C. (2022). Perspectives of industrial hemp cultivation. In M. Pojić, B.K. Tiwari (Eds.), Industrial hemp: Food and nutraceutical applications (pp. 1–36). Academic Press.
  • Ramírez-Verduzco, L.F., Rodríguez-Rodríguez, J.E., & del Rayo Jaramillo-Jacob, A. (2012). Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel, 91(1), 102–111. https://doi.org/10.1016/j.fuel.2011.06.070.
  • Rashid, U., Bhatti, S.G., Ansari, T.M., Yunus, R., & Ibrahim, M. (2016). Biodiesel production from Cannabis sativa oil from Pakistan. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(6), 865-875. https://doi.org/10.1080/15567036.2013.803179.
  • Rashid, U., & Anwar, F. (2008). Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel, 87(3), 265-273. http://dx.doi.org/10.1016/j.fuel.2007.05.00.
  • Sáez-Bastante, J., Fernández-García, P., Saavedra, M., López-Bellido, L., Dorado, M.P., & Pinzi, S. (2016). Evaluation of Sinapis alba as feedstock for biodiesel production in Mediterranean climate. Fuel, 184, 656–664. http://dx.doi.org/10.1016/j.fuel.2016.07.022.
  • Said, Z., Sharma, P., Nhuong, Q.T.B., Bora, B.J., Lichtfouse, E., Khalid, H.M., Luque, R., Nguyen, X.P., & Hoang, A. T. (2023). Intelligent approaches for sustainable management and valorisation of food waste. Bioresource Technology, 128952. https://doi.org/10.1016/j.biortech.2023.128952.
  • Saydut, A., Kafadar, A.B., Aydin, F., Erdogan, S., Kaya, C., & Hamamci, C. (2016). Effect of homogeneous alkaline catalyst type on biodiesel production from soybean [Glycine max (L.) Merrill] oil. Indian Journal of Biotechonology, 15(4), 596–600.
  • Sharma, P., Sivaramakrishnaiah, M., Deepanraj, B., Saravanan, R., & Reddy, M. V. (2022). A novel optimization approach for biohydrogen production using algal biomass. International Journal of Hydrogen Energy. Article in press. https://doi.org/10.1016/j.ijhydene.2022.09.274.
  • Shrivastava, P., Rajak, U., Nashine, P., & Verma, T.N. (2021). Performance and emission characteristics of a compression ıgnition engine fueled with roselle and karanja biodiesel. In S.M. Sapuan, R. Nadlene, A.M. Radzi, & R.A. Ilyas (Eds.), Roselle: Production, processing, products and biocomposites (pp. 165-176). Academic Press.
  • Singh, A., He, B., Thompson, J., & Van Gerpen, J. (2006). Process optimization of biodiesel production using alkaline catalysts. Applied Engineering in Agriculture, 22(4), 597–600.
  • Small, E. (2015). Evolution and classification of Cannabis sativa (marijuana, hemp) in relation to human utilization. The botanical review, 81, 189–294. https://doi.org/10.1007/s12229-015-9157-3.
  • Stamenković, O.S., Veličković, A.V., Kostić, M.D., Joković, N.M., Rajković, K.M., Milić, P.S., & Veljković, V.B. (2015). Optimization of KOH-catalyzed methanolysis of hempseed oil. Energy Conversion and Management, 103, 235-243. http://dx.doi.org/10.1016/j.enconman.2015.06.054.
  • Strzelczyk, M., Lochynska, M., & Chudy, M. (2022). Systematics and botanical characteristics of industrial hemp Cannabis sativa L. Journal of Natural Fibers, 19(13), 5804–5826. https://doi.org/10.1080/15440478.2021.1889443.
  • Sultana, S., Khalid, A., Ahmad, M., Zuhairi, A.A., Teong, L.K., Zafar, M., & Hassan, F.U. (2014). The production, optimization, and characterization of biodiesel from a novel source: Sinapis alba L. International Journal of Green Energy, 11(3), 280-291. https://doi.org/10.1080/15435075.2013.772520.
  • Verma, P., & Sharma, M.P. (2016). Review of process parameters for biodiesel production from different feedstocks. Renewable and sustainable energy reviews, 62, 1063-1071. http://dx.doi.org/10.1016/j.rser.2016.04.054.
  • Wang, Y. (2019). Applications of rice bran oil. In L.Z. Cheong, X. Xu (Eds.), Rice bran and rice bran oil (pp. 159-168). AOCS Press.
  • Wirtshafter, D.E. (2004). Ten years of a modern hemp industry. Journal of Industrial Hemp, 9(1), 9–14. https://doi.org/10.1300/J237v09n01_03.
  • Yesilyurt, M.K., & Cesur, C. (2020). Biodiesel synthesis from Styrax officinalis L. seed oil as a novel and potential non-edible feedstock: A parametric optimization study through the Taguchi technique. Fuel, 265, 117025. https://doi.org/10.1016/j.fuel.2020.117025.
  • Yıldırım, H.H. (2019). Yenilenebilir enerji yatırımlarındaki teşviklerin yatırım performansları üzerine etkisi. Finans Ekonomi ve Sosyal Araştırmalar Dergisi, 4(3), 330–345. https://doi.org/10.29106/fesa.605785.
  • Zahan, K.A., & Kano, M. (2018). Biodiesel production from palm oil, its by-products, and mill effluent: A review. Energies, 11(8), 2132. https://doi.org/10.3390/en11082132.
There are 61 citations in total.

Details

Primary Language Turkish
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical), Optimization Techniques in Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Fatmanur Demirbaş 0009-0007-9649-8681

Volkan Aslan 0000-0002-5354-2474

Project Number 1919B012205988
Publication Date June 3, 2024
Submission Date December 22, 2023
Acceptance Date March 15, 2024
Published in Issue Year 2024

Cite

APA Demirbaş, F., & Aslan, V. (2024). KENEVİR TOHUMU YAĞI VE NAOH-KOH KULLANILARAK ÜRETİLEN METİL ESTERLERİN MOTORİNLE HARMANLANMASI İLE ELDE EDİLEN BİYOYAKITLARIN KİNEMATİK VİSKOZİTE DEĞERLERİNİN KARŞILAŞTIRILMASI. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 539-553. https://doi.org/10.17780/ksujes.1405375