HYDROGEN PEROXIDE-INDUCED EXPANSION IN RAW PERLITE BASED LIGHTWEIGHT GEOPOLYMERS: AN EXPERIMENTAL APPROACH
Year 2024,
, 886 - 895, 03.09.2024
Ali İhsan Çelik
,
Mehmet Cemal Acar
,
Ufuk Tunç
,
Ramazan Kayabaşı
,
Ahmet Şener
Abstract
In modern buildings, it is of great importance that masonry walls are constructed with light and durable materials and at the same time have low thermal conductivity. Increasing lightness, durability and resistance to heat transfer in such elements contributes to reducing heating and cooling loads while reducing the building load. Especially in the production of raw perlite-based lightweight concretes, expansion can be achieved by adding Hydrogen Peroxide (H2O2). In this study, raw perlite-based lightweight structural elements using 1%, 2%, 3% and 4% H2O2 addition were experimentally examined. The results obtained showed that the addition of 3% H2O2 gave the best results, while the addition of 4% caused excessive swelling and structural disintegration in the perlite particles. Additionally, the relationship between bending strength, compressive strength and thermal conductivity performance was evaluated with the H2O2 ratio used.
Project Number
FBA-2023-1119
References
- Alves, C,, Pelisser, F,, Labrincha, J,, & Novais, R, (2023), Effect of Hydrogen Peroxide on the Thermal and Mechanical Properties of Lightweight Geopolymer Mortar Panels, Minerals, 13(4), 542, doi:https://doi,org/10,3390/min13040542,
- Bai, C,, & Colombo, P, (2018), Processing, properties and applications of highly porous geopolymers: A review, Ceramics International, 44(14), 16103-16118, doi:https://doi,org/10,1016/j,ceramint,2018,05,219,
- Chen, M,, Liu, P,, Kong, D,, Wang, Y,, Wang, J,, Huang, Y,, Wu, N, (2022), Influencing factors of mechanical and thermal conductivity of foamed phosphogypsum-based composite cementitious materials, Construction and Building Materials, 346, 128462, doi:https://10,1016/j,conbuildmat,2022,128462,
- Ducman, V,, & Korat, L, (2016), Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents, Materials characterization, 113, 207-213,
- Esmaily, H,, & Nuranian, H, (2012), Non-autoclaved high strength cellular concrete from alkali activated slag, Construction and Building Materials, 26(1), 200-206,
- Hermann, D, T,, Tome, S,, Shikuku, V, O,, Tchuigwa, J, B,, Spieß, A,, Janiak, C,, Joh Dina, D, D, (2022), Enhanced performance of hydrogen peroxide modified pozzolan-based geopolymer for abatement of methylene blue from aqueous medium, Silicon, 14(10), 5191-5206,
- Łach, M,, Korniejenko, K,, & Mikuła, J, (2016), Thermal insulation and thermally resistant materials made of geopolymer foams, Procedia Engineering, 151, 410-416, doi:https://doi,org/10,1016/j,proeng,2016,07,350,
- Li, S,, Li, H,, Yan, C,, Ding, Y,, Zhang, X,, & Zhao, J, (2022), Investigating the Mechanical and Durability Characteristics of Fly Ash Foam Concrete, Materials, 15(17), 6077, doi:https://doi,org/10,3390/ma15176077
- Li, T,, Wang, Z,, Zhou, T,, He, Y,, & Huang, F, (2019), Preparation and properties of magnesium phosphate cement foam concrete with H2O2 as foaming agent, Construction and Building Materials, 205, 566-573, doi:https://doi,org/10,1016/j,conbuildmat,2019,02,022
- McLellan, B, C,, Williams, R, P,, Lay, J,, Van Riessen, A,, & Corder, G, D, (2011), Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement, Journal of Cleaner Production, 19(9-10), 1080-1090
- Novais, R, M,, Buruberri, L,, Ascensão, G,, Seabra, M,, & Labrincha, J, (2016), Porous biomass fly ash-based geopolymers with tailored thermal conductivity, Journal of Cleaner Production, 119, 99-107
- Provis, J, L,, Palomo, A,, & Shi, C, (2015), Advances in understanding alkali-activated materials, Cement and Concrete Research, 78, 110-125
- Şahin, M,, Erdoğan, S, T,, & Bayer, Ö, (2018), Production of lightweight aerated alkali-activated slag pastes using hydrogen peroxide, Construction and Building Materials, 181, 106-118, doi:https://doi,org/10,1016/j,conbuildmat,2018,05,267
- Tamošaitis, G,, Vaičiukynienė, D,, Jaskaudas, T,, Mockiene, J,, & Pupeikis, D, (2023), Development of alkali-activated porous concrete composition from slag waste, Materials, 16(4), 1360, doi:https://doi,org/10,3390/ma16041360
- Tan, T, H,, Shah, S, N,, Ng, C, C,, Putra, A,, Othman, M, N,, & Mo, K, H, (2022), Insulating foamed lightweight cementitious composite with co-addition of micro-sized aerogel and hydrogen peroxide, Construction and Building Materials, 360, 129485, doi:https://doi,org/10,1016/j,conbuildmat,2022,129485
- Yang, K,-H,, Song, J,-K,, & Song, K,-I, (2013), Assessment of CO2 reduction of alkali-activated concrete, Journal of Cleaner Production, 39, 265-272, doi:https://doi,org/10,1016/j,jclepro,2012,08,001
- Zhang, D,, Ding, S,, Ma, Y,, & Yang, Q, (2022), Preparation and Properties of Foam Concrete Incorporating Fly Ash, Materials, 15(18), 6287, doi:https://doi,org/10,3390/ma15186287
HAM PERLİT ESASLI HAFİF GEOPOLİMERLERDE HİDROJEN PEROKSİT KAYNAKLI GENLEŞME: DENEYSEL BİR YAKLAŞIM
Year 2024,
, 886 - 895, 03.09.2024
Ali İhsan Çelik
,
Mehmet Cemal Acar
,
Ufuk Tunç
,
Ramazan Kayabaşı
,
Ahmet Şener
Abstract
Modern yapılarda yığma duvarların hafif ve dayanıklı malzemelerle inşa edilmesi, aynı zamanda düşük ısı iletkenliğe sahip olması büyük önem taşımaktadır. Bu tür elemanlarda hafiflik, dayanıklılık ve ısı geçişine karşı direncin artırılması bina yükünü azaltırken ısıtma ve soğutma yüklerini azaltmaya katkı sunmaktadır. Özellikle ham perlit temelli hafif betonların üretiminde, Hidrojen Peroksit (H2O2) ilavesiyle genleşme sağlanabilmektedir. Bu çalışmada ise %1, %2, %3 ve %4 oranlarda H2O2 ilavesinin kullanıldığı ham perlit esaslı hafifi yapı elemanlarının deneysel olarak incelemesi yapılmıştır. Elde edilen sonuçlar, %3 oranında H2O2 ilavesinin en iyi sonuçları verdiğini, %4 ilavesiyle perlit taneciklerinde aşırı şişme ve yapısal dağılma meydana geldiğini göstermiştir. Ayrıca, eğilme dayanımı, basınç dayanımı ve ısı iletkenlik performansı arasındaki ilişki, kullanılan H2O2 oranıyla değerlendirilmiştir. TGA ve DTA analizine göre numunenin kütle kaybına uğradığı sıcaklık dereceleri belirlenmiştir.
Supporting Institution
Kayseri Üniversitesi
Project Number
FBA-2023-1119
Thanks
Kayseri Üniversitesi Bilimsel Araştırma Projeleri (BAP) birimine desteklerinden dolayı teşekkür ederiz.
References
- Alves, C,, Pelisser, F,, Labrincha, J,, & Novais, R, (2023), Effect of Hydrogen Peroxide on the Thermal and Mechanical Properties of Lightweight Geopolymer Mortar Panels, Minerals, 13(4), 542, doi:https://doi,org/10,3390/min13040542,
- Bai, C,, & Colombo, P, (2018), Processing, properties and applications of highly porous geopolymers: A review, Ceramics International, 44(14), 16103-16118, doi:https://doi,org/10,1016/j,ceramint,2018,05,219,
- Chen, M,, Liu, P,, Kong, D,, Wang, Y,, Wang, J,, Huang, Y,, Wu, N, (2022), Influencing factors of mechanical and thermal conductivity of foamed phosphogypsum-based composite cementitious materials, Construction and Building Materials, 346, 128462, doi:https://10,1016/j,conbuildmat,2022,128462,
- Ducman, V,, & Korat, L, (2016), Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents, Materials characterization, 113, 207-213,
- Esmaily, H,, & Nuranian, H, (2012), Non-autoclaved high strength cellular concrete from alkali activated slag, Construction and Building Materials, 26(1), 200-206,
- Hermann, D, T,, Tome, S,, Shikuku, V, O,, Tchuigwa, J, B,, Spieß, A,, Janiak, C,, Joh Dina, D, D, (2022), Enhanced performance of hydrogen peroxide modified pozzolan-based geopolymer for abatement of methylene blue from aqueous medium, Silicon, 14(10), 5191-5206,
- Łach, M,, Korniejenko, K,, & Mikuła, J, (2016), Thermal insulation and thermally resistant materials made of geopolymer foams, Procedia Engineering, 151, 410-416, doi:https://doi,org/10,1016/j,proeng,2016,07,350,
- Li, S,, Li, H,, Yan, C,, Ding, Y,, Zhang, X,, & Zhao, J, (2022), Investigating the Mechanical and Durability Characteristics of Fly Ash Foam Concrete, Materials, 15(17), 6077, doi:https://doi,org/10,3390/ma15176077
- Li, T,, Wang, Z,, Zhou, T,, He, Y,, & Huang, F, (2019), Preparation and properties of magnesium phosphate cement foam concrete with H2O2 as foaming agent, Construction and Building Materials, 205, 566-573, doi:https://doi,org/10,1016/j,conbuildmat,2019,02,022
- McLellan, B, C,, Williams, R, P,, Lay, J,, Van Riessen, A,, & Corder, G, D, (2011), Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement, Journal of Cleaner Production, 19(9-10), 1080-1090
- Novais, R, M,, Buruberri, L,, Ascensão, G,, Seabra, M,, & Labrincha, J, (2016), Porous biomass fly ash-based geopolymers with tailored thermal conductivity, Journal of Cleaner Production, 119, 99-107
- Provis, J, L,, Palomo, A,, & Shi, C, (2015), Advances in understanding alkali-activated materials, Cement and Concrete Research, 78, 110-125
- Şahin, M,, Erdoğan, S, T,, & Bayer, Ö, (2018), Production of lightweight aerated alkali-activated slag pastes using hydrogen peroxide, Construction and Building Materials, 181, 106-118, doi:https://doi,org/10,1016/j,conbuildmat,2018,05,267
- Tamošaitis, G,, Vaičiukynienė, D,, Jaskaudas, T,, Mockiene, J,, & Pupeikis, D, (2023), Development of alkali-activated porous concrete composition from slag waste, Materials, 16(4), 1360, doi:https://doi,org/10,3390/ma16041360
- Tan, T, H,, Shah, S, N,, Ng, C, C,, Putra, A,, Othman, M, N,, & Mo, K, H, (2022), Insulating foamed lightweight cementitious composite with co-addition of micro-sized aerogel and hydrogen peroxide, Construction and Building Materials, 360, 129485, doi:https://doi,org/10,1016/j,conbuildmat,2022,129485
- Yang, K,-H,, Song, J,-K,, & Song, K,-I, (2013), Assessment of CO2 reduction of alkali-activated concrete, Journal of Cleaner Production, 39, 265-272, doi:https://doi,org/10,1016/j,jclepro,2012,08,001
- Zhang, D,, Ding, S,, Ma, Y,, & Yang, Q, (2022), Preparation and Properties of Foam Concrete Incorporating Fly Ash, Materials, 15(18), 6287, doi:https://doi,org/10,3390/ma15186287