Research Article
BibTex RIS Cite

IMPACT OF ELECTRIC CARS ON THE CRASH PERFORMANCE OF LONGITUDINAL BARRIERS

Year 2024, , 488 - 501, 03.06.2024
https://doi.org/10.17780/ksujes.1467106

Abstract

The use of battery electric vehicles (EVs) is spreading around the world due to their advantages. The presence of large batteries makes electric cars heavier, and due to their position, the vehicle’s center of gravity is lowered compared to conventional internal combustion engine cars. The weight of an impacting vehicle is one of the critical parameters for the acceptable performance of longitudinal barriers. It is anticipated that EVs could pose failure risks for conventional safety hardware, yet there is still no revision regarding the use of EVs in existing full-scale crash test standards. In this study, the effect of electric cars on the crash performance of the H1 containment level longitudinal steel safety barrier was investigated through computer simulations. Three different vehicle models, each weighing 900 kg and currently used for TB11 finite element analyses, were modified according to the features of the selected reference EVs. Barrier crash performance was evaluated in terms of occupant safety and structural adequacy. Analysis results showed that with increasing vehicle weights in EV tests, injury severity indices become smaller, while the damage to the barrier gets larger. Further investigation of the crash performance of existing barriers with EVs is highly recommended.

References

  • AASHTO. (2016). Manual for Assessing Safety Hardware (Second Edition). American Association of State Highway and Transportation Officials (AASHTO).
  • Atahan, A. O., Yücel, A. T., & Erdem, M. M. (2014). Crash testing and evaluation of a new generation L1 containment level guardrail. Engineering Failure Analysis, 38, 25-37. https://doi.org/10.1016/j.engfailanal.2014.01.003
  • Atahan, A. O., & Yucel, A. O. (2013). Laboratory and field evaluation of recycled content sign posts. Resources, Conservation and Recycling, 73, 114–121. https://doi.org/https://doi.org/10.1016/j.resconrec.2013.02.002
  • Atahan, A. O., Yucel, A. O., & Guven, O. (2013). Development of N2–H1 Performance-Level Guardrail: Crash Testing and Simulation. Transportation Research Circular, E-C172.
  • Autozine. CG location of Renault (2023a). http://www.autozine.org/Archive/Renault/new/Zoe.html Accessed 15.10.23.
  • Autozine. Renault Megane E-Tech Electric (2023b). https://www.autozine.org/Archive/Renault/new/Megane_Electric.html Accessed 01.11.23.
  • Borovinšek, M., Vesenjak, M., Ulbin, M., & Ren, Z. (2007). Simulation of crash tests for high containment levels of road safety barriers. Engineering Failure Analysis, 14(8), 1711–1718. https://doi.org/https://doi.org/10.1016/j.engfailanal.2006.11.068
  • BS EN 16303:2020. (2020). Road restraint systems - Validation and verification process for the use of virtual testing in crash testing against vehicle restraint system. BSI Standards Publication .
  • CCSA. Center for Collision Safety and Analysis, Finite Element models (2023). https://www.ccsa.gmu.edu/models/ Accessed 15.10.23.
  • CSI. (2014). TB11 Test Report, H1 class Monolateral barrier for installation on soil, CSI-SPA, Ballote, Italy.
  • EN 1317-1. (2010). Road restraint systems, Part 1: Terminology and General Criteria For Test Methods. European Committee for Standardization: Brussels, Belgium.
  • EN 1317-2. (2010). Road restraint systems, Part 2: Performance classes, impact test acceptance criteria and test methods for safety barriers including vehicle parapets. European Committee for Standardization: Brussels, Belgium.
  • Gheres, M. I., & Scurtu, I. L. (2022). Crash testing and evaluation of W-beam guardrail using finite elements method. IOP Conference Series: Materials Science and Engineering, 1220(1), 012049. https://doi.org/10.1088/1757-899X/1220/1/012049
  • He, L., & Lin, X. (2018). An improved mathematical model for vehicle crashagainst highway guardrails. Archives of Transport, 48(4), 41–49.
  • Hyundai. Car specifications (2023). https://www.hyundai.com/worldwide/en/eco/ioniq-electric/design Accessed 15.10.23.
  • IEA. Global EV Outlook 2023 (2023). https://www.iea.org/reports/global-ev-outlook-2023 Accessed 13.11.23.
  • Kim, K.-D., Ko, M.-G., Kim, D.-S., Joo, J.-W., & Jang, D.-Y. (2016). Strategy to increase the speed of a small car impact to a semi-rigid barrier designed for high impact severity. International Journal of Crashworthiness, 21(4), 310–322. https://doi.org/10.1080/13588265.2016.1175052
  • Langseth, M., Hopperstad, O. S., & Berstad, T. (1999). Crashworthiness of aluminium extrusions: validation of numerical simulation, effect of mass ratio and impact velocity. International Journal of Impact Engineering, 22(9), 829–854. https://doi.org/https://doi.org/10.1016/S0734-743X(98)00070-0
  • LSTC. (2012). LS-DYNA Keyword User’s Manual. Livermore Software Technology Corporation: Livermore, CA, USA.
  • MG. Car specification (2023). https://www.mg.co.uk/new-cars/mg4-ev Accessed 15.10.23.
  • Molan, A. M., & Ksaibati, K. (2021). Impact of side traffic barrier features on the severity of run-off-road crashes involving horizontal curves on non-interstate roads. International Journal of Transportation Science and Technology, 10(3), 245–253. https://doi.org/https://doi.org/10.1016/j.ijtst.2020.07.006
  • Molan, A. M., Moomen, M., & Ksaibati, K. (2019). Investigating the effect of geometric dimensions of median traffic barriers on crashes: Crash analysis of interstate roads in Wyoming using actual crash datasets. Journal of Safety Research, 71, 163–171.
  • NCAC. Finite element model archive, FHWA/NHTSA National Crash Analysis Center, George Washington University (2008). http://www.ncac.gwu.edu/vml/models.html Accessed 01.04.08.
  • NHTSA. National Highway Traffic Safety Administration, Crash Simulation Vehicle Models (2023). https://www.nhtsa.gov/crash-simulation-vehicle-models Accessed 15.10.23.
  • Özcanan, S., & Özcan, Ö. (2022). Criteria inadequacy of the vehicles used for the calculation of safety parameters in the EN1317-TB11 test. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 237(4), 680–690. https://doi.org/10.1177/09544070221115010
  • Ozcanan, S., & Atahan, A. O. (2021). Minimization of Accident Severity Index in concrete barrier designs using an ensemble of radial basis function metamodel-based optimization. Optimization and Engineering, 22(1), 485–519. https://doi.org/10.1007/s11081-020-09522-x
  • Pawlak, M. (2016). The Acceleration Severity Index in the impact of a vehicle against permanent road equipment support structures. Mechanics Research Communications, 77, 21–28. https://doi.org/https://doi.org/10.1016/j.mechrescom.2016.08.005
  • Reichert, R., Marzougui, D., & Kan, C.-D. (2020). Crash Simulations Between Non-Occupied Automated Driving Systems and Roadside Hardware. United States. Department of Transportation. National Highway Traffic Safety ….
  • Ren, Z., & Vesenjak, M. (2005). Computational and experimental crash analysis of the road safety barrier. Engineering Failure Analysis, 12(6), 963–973. https://doi.org/https://doi.org/10.1016/j.engfailanal.2004.12.033
  • Renault. Car specifications (2023). https://www.renault.co.uk/electric-vehicles/zoe/specifications.html Accessed 15.10.23.
  • Teng, T.-L., Liang, C.-C., Hsu, C.-Y., Shih, C.-J., & Tran, T.-T. (2016). Impact performance of W-beam guardrail supported by different shaped posts. International Journal of Mechanical Engineering and Applications, 4(2), 59–64.
  • Teng, T.-L., Liang, C.-C., & Tran, T.-T. (2015). Effect of various W-beam guardrail post spacings and rail heights on safety performance. Advances in Mechanical Engineering, 7(11), 1687814015615544. https://doi.org/10.1177/1687814015615544
  • Wolny, R., Bruski, D., Budzyński, M., Pachocki, L., & Wilde, K. (2022). Influence of a Lighting Column in the Working Width of a W-Beam Barrier on TB51 Crash Test. Materials, 15(14). https://doi.org/10.3390/ma15144926
  • Yücel, A. Ö., Atahan, A. O., Arslan, T., & Sevim, U. K. (2018). Traffic Safety at Median Ditches: Steel vs. Concrete Barrier Performance Comparison Using Computer Simulation. Safety, 4(4). https://doi.org/10.3390/safety4040050

ELEKTRİKLİ ARAÇLARIN GÜVENLİK BARİYERLERİNİN ÇARPIŞMA PERFORMANSINA ETKİSİ

Year 2024, , 488 - 501, 03.06.2024
https://doi.org/10.17780/ksujes.1467106

Abstract

Elektrikli araçların kullanımı, avantajları nedeniyle tüm dünyada yaygınlaşmaktadır. Büyük bataryalar elektrikli arabaları ağırlaştırmakta ve konumları nedeniyle aracın ağırlık merkezini, geleneksel içten yanmalı motorlu arabalara göre daha alçak hale getirmektedir. Çarpan aracın ağırlığı, güvenlik bariyerlerinin kabul edilebilir performansı için önemli parametrelerden biridir. Elektrikli araçların geleneksel güvenlik tertibatları için başarısızlık riski oluşturabileceği öngörülmektedir. Ancak mevcut tam ölçekli çarpışma testi standartlarında elektrikli araçların kullanımına dair henüz bir güncelleme bulunmamaktadır. Bu çalışmada, elektrikli arabaların H1 performans seviyesi çelik güvenlik bariyerinin çarpışma performansına etkisi bilgisayar simülasyonlarıyla incelenmiştir. Her biri 900 kg ağırlığında olan ve halihazırda TB11 sonlu elemanlar analizlerinde kullanılan üç farklı araç modeli, seçilen referans elektrikli araçların özelliklerine göre modifiye edilmiştir. Bariyerin çarpışma performansı, yolcu güvenliği ve yapısal yeterlilik açısından değerlendirilmiştir. Analiz sonuçları, elektrikli araç testlerinde araç ağırlığının artmasıyla yaralanma şiddet indekslerinin küçüldüğünü, bariyerdeki hasarın ise büyüdüğünü göstermiştir. Mevcut bariyerlerin elektrikli araçlarla çarpışma performansına ilişkin daha fazla araştırma yapılması önerilmektedir.

References

  • AASHTO. (2016). Manual for Assessing Safety Hardware (Second Edition). American Association of State Highway and Transportation Officials (AASHTO).
  • Atahan, A. O., Yücel, A. T., & Erdem, M. M. (2014). Crash testing and evaluation of a new generation L1 containment level guardrail. Engineering Failure Analysis, 38, 25-37. https://doi.org/10.1016/j.engfailanal.2014.01.003
  • Atahan, A. O., & Yucel, A. O. (2013). Laboratory and field evaluation of recycled content sign posts. Resources, Conservation and Recycling, 73, 114–121. https://doi.org/https://doi.org/10.1016/j.resconrec.2013.02.002
  • Atahan, A. O., Yucel, A. O., & Guven, O. (2013). Development of N2–H1 Performance-Level Guardrail: Crash Testing and Simulation. Transportation Research Circular, E-C172.
  • Autozine. CG location of Renault (2023a). http://www.autozine.org/Archive/Renault/new/Zoe.html Accessed 15.10.23.
  • Autozine. Renault Megane E-Tech Electric (2023b). https://www.autozine.org/Archive/Renault/new/Megane_Electric.html Accessed 01.11.23.
  • Borovinšek, M., Vesenjak, M., Ulbin, M., & Ren, Z. (2007). Simulation of crash tests for high containment levels of road safety barriers. Engineering Failure Analysis, 14(8), 1711–1718. https://doi.org/https://doi.org/10.1016/j.engfailanal.2006.11.068
  • BS EN 16303:2020. (2020). Road restraint systems - Validation and verification process for the use of virtual testing in crash testing against vehicle restraint system. BSI Standards Publication .
  • CCSA. Center for Collision Safety and Analysis, Finite Element models (2023). https://www.ccsa.gmu.edu/models/ Accessed 15.10.23.
  • CSI. (2014). TB11 Test Report, H1 class Monolateral barrier for installation on soil, CSI-SPA, Ballote, Italy.
  • EN 1317-1. (2010). Road restraint systems, Part 1: Terminology and General Criteria For Test Methods. European Committee for Standardization: Brussels, Belgium.
  • EN 1317-2. (2010). Road restraint systems, Part 2: Performance classes, impact test acceptance criteria and test methods for safety barriers including vehicle parapets. European Committee for Standardization: Brussels, Belgium.
  • Gheres, M. I., & Scurtu, I. L. (2022). Crash testing and evaluation of W-beam guardrail using finite elements method. IOP Conference Series: Materials Science and Engineering, 1220(1), 012049. https://doi.org/10.1088/1757-899X/1220/1/012049
  • He, L., & Lin, X. (2018). An improved mathematical model for vehicle crashagainst highway guardrails. Archives of Transport, 48(4), 41–49.
  • Hyundai. Car specifications (2023). https://www.hyundai.com/worldwide/en/eco/ioniq-electric/design Accessed 15.10.23.
  • IEA. Global EV Outlook 2023 (2023). https://www.iea.org/reports/global-ev-outlook-2023 Accessed 13.11.23.
  • Kim, K.-D., Ko, M.-G., Kim, D.-S., Joo, J.-W., & Jang, D.-Y. (2016). Strategy to increase the speed of a small car impact to a semi-rigid barrier designed for high impact severity. International Journal of Crashworthiness, 21(4), 310–322. https://doi.org/10.1080/13588265.2016.1175052
  • Langseth, M., Hopperstad, O. S., & Berstad, T. (1999). Crashworthiness of aluminium extrusions: validation of numerical simulation, effect of mass ratio and impact velocity. International Journal of Impact Engineering, 22(9), 829–854. https://doi.org/https://doi.org/10.1016/S0734-743X(98)00070-0
  • LSTC. (2012). LS-DYNA Keyword User’s Manual. Livermore Software Technology Corporation: Livermore, CA, USA.
  • MG. Car specification (2023). https://www.mg.co.uk/new-cars/mg4-ev Accessed 15.10.23.
  • Molan, A. M., & Ksaibati, K. (2021). Impact of side traffic barrier features on the severity of run-off-road crashes involving horizontal curves on non-interstate roads. International Journal of Transportation Science and Technology, 10(3), 245–253. https://doi.org/https://doi.org/10.1016/j.ijtst.2020.07.006
  • Molan, A. M., Moomen, M., & Ksaibati, K. (2019). Investigating the effect of geometric dimensions of median traffic barriers on crashes: Crash analysis of interstate roads in Wyoming using actual crash datasets. Journal of Safety Research, 71, 163–171.
  • NCAC. Finite element model archive, FHWA/NHTSA National Crash Analysis Center, George Washington University (2008). http://www.ncac.gwu.edu/vml/models.html Accessed 01.04.08.
  • NHTSA. National Highway Traffic Safety Administration, Crash Simulation Vehicle Models (2023). https://www.nhtsa.gov/crash-simulation-vehicle-models Accessed 15.10.23.
  • Özcanan, S., & Özcan, Ö. (2022). Criteria inadequacy of the vehicles used for the calculation of safety parameters in the EN1317-TB11 test. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 237(4), 680–690. https://doi.org/10.1177/09544070221115010
  • Ozcanan, S., & Atahan, A. O. (2021). Minimization of Accident Severity Index in concrete barrier designs using an ensemble of radial basis function metamodel-based optimization. Optimization and Engineering, 22(1), 485–519. https://doi.org/10.1007/s11081-020-09522-x
  • Pawlak, M. (2016). The Acceleration Severity Index in the impact of a vehicle against permanent road equipment support structures. Mechanics Research Communications, 77, 21–28. https://doi.org/https://doi.org/10.1016/j.mechrescom.2016.08.005
  • Reichert, R., Marzougui, D., & Kan, C.-D. (2020). Crash Simulations Between Non-Occupied Automated Driving Systems and Roadside Hardware. United States. Department of Transportation. National Highway Traffic Safety ….
  • Ren, Z., & Vesenjak, M. (2005). Computational and experimental crash analysis of the road safety barrier. Engineering Failure Analysis, 12(6), 963–973. https://doi.org/https://doi.org/10.1016/j.engfailanal.2004.12.033
  • Renault. Car specifications (2023). https://www.renault.co.uk/electric-vehicles/zoe/specifications.html Accessed 15.10.23.
  • Teng, T.-L., Liang, C.-C., Hsu, C.-Y., Shih, C.-J., & Tran, T.-T. (2016). Impact performance of W-beam guardrail supported by different shaped posts. International Journal of Mechanical Engineering and Applications, 4(2), 59–64.
  • Teng, T.-L., Liang, C.-C., & Tran, T.-T. (2015). Effect of various W-beam guardrail post spacings and rail heights on safety performance. Advances in Mechanical Engineering, 7(11), 1687814015615544. https://doi.org/10.1177/1687814015615544
  • Wolny, R., Bruski, D., Budzyński, M., Pachocki, L., & Wilde, K. (2022). Influence of a Lighting Column in the Working Width of a W-Beam Barrier on TB51 Crash Test. Materials, 15(14). https://doi.org/10.3390/ma15144926
  • Yücel, A. Ö., Atahan, A. O., Arslan, T., & Sevim, U. K. (2018). Traffic Safety at Median Ditches: Steel vs. Concrete Barrier Performance Comparison Using Computer Simulation. Safety, 4(4). https://doi.org/10.3390/safety4040050
There are 34 citations in total.

Details

Primary Language English
Subjects Transportation Engineering
Journal Section Civil Engineering
Authors

Ayhan Öner Yücel 0000-0001-5888-2809

Publication Date June 3, 2024
Submission Date April 9, 2024
Acceptance Date April 29, 2024
Published in Issue Year 2024

Cite

APA Yücel, A. Ö. (2024). IMPACT OF ELECTRIC CARS ON THE CRASH PERFORMANCE OF LONGITUDINAL BARRIERS. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 488-501. https://doi.org/10.17780/ksujes.1467106