Research Article
BibTex RIS Cite

OPTIMIZATION OF ENGINEERING PROPERTIES OF SELF-COMPACTING CONCRETE CONTAINING RECYCLED AGGREGATE

Year 2024, , 459 - 469, 03.06.2024
https://doi.org/10.17780/ksujes.1467224

Abstract

Self-compacting concrete is a special type of concrete that attracts a lot of attention due to its high workability and adequate performance in terms of engineering properties. In this study, an optimisation study was carried out with the Response Surface Method considering the literature studies on self-compacting concrete applications containing recycled aggregates. In the optimisation study, recycled fine and coarse aggregate percentages and water/cement ratio were selected as input parameters. In this context, spread diameter values reflecting the fresh property of self-compacting concrete and compressive strength parameters showing the hardened performance were examined. Thanks to this method, models reflecting the effect of the input variables on the output parameters were created. Aggregate amounts and compressive strength were maximised and other parameters were left free. A target value was defined for the spreading diameter. In addition, the significance of the models created as a result of the analysis of variance was revealed. The desirability value of the model was obtained as 0.734. Thus, the optimum design parameters for self-compacting concrete containing recycled aggregate were reached by significantly approaching the desired level.

References

  • Adamu, M., Haruna, S. I., Ibrahim, Y. E., & Alanazi, H. (2022). Evaluation of the Mechanical Performance of Concrete Containing Calcium Carbide Residue and Nano Silica Using Response Surface Methodology. Environmental Science and Pollution Research, 29(44), 67076-67102. https://doi.org/10.1007/s11356-022-20546-x.
  • Adamu, M., Marouf, M. L., Ibrahim, Y. E., Ahmed, O. S., Alanazi, H., & Marouf, A. L. (2022). Modeling and Optimization of The Mechanical Properties of Date Fiber Reinforced Concrete Containing Silica Fume Using Response Surface Methodology. Case Studies in Construction Materials, 17. https://doi.org/10.1016/j.cscm.2022.e01633.
  • Avci, Y., & Ekmen, A. B. (2023). Artificial Intelligence Assisted Optimization of Rammed Aggregate Pier Supported Raft Foundation Systems Based on Parametric Three-Dimensional Finite Element Analysis. In Structures, Vol. 56, p. 105031. https://doi.org/10.1016/j.istruc.2023.105031.
  • Awolusi, T. F., Oke, O. L., Akinkurolere, O. O., & Sojobi, A. O. (2019). Application of Response Surface Methodology: Predicting and Optimizing The Properties of Concrete Containing Steel Fibre Extracted From Waste Tires With Limestone Powder As Filler. Case studies in Construction materials, 10. https://doi.org/10.1016/j.cscm.2018.e00212.
  • Bayramov, F., Taşdemir, C., & Taşdemir, M.A. (2004). Optimisation of Steel Fibre Reinforced Concretes by Means of Statistical Response Surface Method, Cement and Concrete Composites 26, 665–675. https://doi.org/10.1016/S0958-9465(03)00161-6.
  • Broyles, J. M., Shepherd, M. R., & Brown, N. C. (2022). Design Optimization of Structural–Acoustic Spanning Concrete Elements in Buildings. Journal of Architectural Engineering, 28(1), 04021044. https://doi.org/10.1061/(ASCE)AE.1943-5568.000052.
  • Campos, R. S., Barbosa, M. P., Pimentel, L. L., & Maciel, G. de F. (2018). Influência dos agregados reciclados nas propriedades reológicas e mecânicas do concreto autoadensável. Matéria (Rio de Janeiro), 23(1). doi:10.1590/s1517-707620170001.0300. https://doi.org/10.1590/S1517-707620170001.0300.
  • Concrete, S. C. (2005). The European Guidelines for Self-Compacting Concrete. BIBM, et al, 22, 563.
  • Corinaldesi, V., & Moriconi, G. (2004). Self-Compacting Concrete: A Great Opportunity for Recycling Materials, in: Proceedings of the International RILEM Conference on the Use of Recycled Materials in Building and Structures, 10 p.
  • Corinaldesi, V., & Moriconi, G., (2011). The Role of İndustrial By-Products in Selfcompacting Concrete. Construct. Build. Mater. 25 (8), 3181e3186. https:// doi.org/10.1016/j.conbuildmat.2011.03.001.
  • Design Expert, 2010. Design Expert, Stat-Ease, Minneapolis, USA.
  • Ekmen, A. B., Algin, H. M., & Özen, M. (2020). Strength and Stiffness Optimisation of Fly Ash-Admixed DCM Columns Constructed in Clayey Silty Sand. Transportation Geotechnics, 24, 100364. https://doi.org/10.1016/j.trgeo.2020.100364.
  • Ekmen, A. B., Avci, Y. (2023). Artificial Intelligence-Assisted Optimization of Tunnel Support Systems Based on the Multiple Three-Dimensional Finite Element Analyses Considering the Excavation Stages. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47(3), 1725-1747. https://doi.org/10.1007/s40996-023-01109-7.
  • Evangelista, L., & De Brito, J., (2014). Concrete with Fine Recycled Aggregates: A Review. Eur. J. Environ. Civ. Eng. 18 (2), 129e172. https://doi.org/10.1080/ 19648189.2013.851038.
  • Garcia-Troncoso, N., Li, L., Cheng, Q., Mo, K. H., & Ling, T. C. (2021). Comparative Study on the Properties and High Temperature Resistance of Self-Compacting Concrete With Various Types of Recycled Aggregates. Case Studies in Construction Materials, 15, e00678. https://doi.org/10.1016/j.cscm.2021.e00678.
  • Grdic, Z.J., Toplicic-Curcic, G.A., Despotovic, I.M., & Ristic, N.S. (2010). Properties of Self compacting Concrete Prepared with Coarse Recycled Concrete Aggregate, Constr. Build. Mater. 24 (7), 1129–1133. https://doi.org/10.1016/j.conbuildmat.2009.12.029.
  • Guo, H., Shi, C., Guan, X., Zhu, J., Ding, Y., Ling, T.C., Zhang, H., & Wang, Y., (2018). Durability of Recycled Aggregate Concrete E A Review. Cement Concr. Compos. 89, 251e259. https://doi.org/10.1016/j.cemconcomp.2018.03.008.
  • Güneyisi, E. Gesoğlu, M., Algın, Z., & Yazıcı, H. (2014). Effect of Surface Treatment Methods on the Properties of Self-Compacting Concrete with Recycled Aggregates, Constr. Build. Mater. 64 172–183. https://doi.org/10.1016/j.conbuildmat.2014.04.090.
  • Hameed, M. M., AlOmar, M. K., Baniya, W. J., & AlSaadi, M. A. (2021). Prediction of High-Strength Concrete: High-Order Response Surface Methodology Modeling Approach. Engineering with Computers, 1-14. https://doi.org/10.1007/s42107-021-00362-3.
  • Haque, M., Ray, S., Mita, A. F., Bhattacharjee, S., & Shams, M. J. B. (2021). Prediction and Optimization of the Fresh and Hardened Properties of Concrete Containing Rice Husk Ash and Glass Fiber Using Response Surface Methodology. Case Studies in Construction Materials, 14. https://doi.org/10.1016/j.cscm.2021.e00505.
  • Khargotra, R., Kumar, R., András, K., Fekete, G., & Singh, T. (2022). Thermo-Hydraulic Characterization and Design Optimization of Delta-Shaped Obstacles in Solar Water Heating System Using CRITIC-COPRAS approach. Energy, 261, 125236. https://doi.org/10.1016/j.energy.2022.125236.
  • Kou, S.C., & Poon, C.S. (2009). Properties of Self-Compacting Concrete Prepared with Coarse and Fine Recycled Concrete Aggregates, Cem. Concr. Compos. 31, 622–627. https://doi.org/10.1016/j.cemconcomp.2009.06.005.
  • Mo, K. H., Ling, T. C., & Cheng, Q. (2021). Examining the Influence of Recycled Concrete Aggregate on the Hardened Properties of Self-Compacting Concrete. Waste and Biomass Valorization, 12, 1133-1141. https://doi.org/10.1007/s12649-020-01045-x.
  • Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons.
  • Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley & Sons.
  • Nambiar, E.K.K., & Ramamurthy, K. (2006). Models Relating Mixture Composition to The Density and Strength of Foam Concrete Using Response Surface Methodology, Cement and Concrete Composites 28, 752–760. https://doi.org/10.1016/j.cemconcomp.2006.06.001.
  • P.O. Modani, V.M. Mohitkar, (2014). Self-Compacting Concrete with Recycled Aggregate: a Solution for Sustainable Development, Int. J. Civil. Struct. Eng. 4 (3) 430–440. http://dx.doi.org/10.6088/ijcser.201304010041.
  • Pereira-de-Oliveira, L.A., Nepomuceno, M.C.S., Castro-Gomes, J.P., & Vila, M.F.C. (2014). Permeability Properties of Self-Compacting Concrete with Coarse Recycled Aggregates, Constr. Build. Mater. 51, 113–120. https://doi.org/10.1016/j.conbuildmat.2013.10.061.
  • Sasanipour, H., & Aslani, F. (2020). Durability Properties Evaluation of Self-Compacting Concrete Prepared with Waste Fine and Coarse Recycled Concrete Aggregates. Construction and Building Materials, 236, 117540. https://doi.org/10.1016/j.conbuildmat.2019.117540.
  • Siamardi, K. (2022). Optimization of Fresh and Hardened Properties of Structural Light Weight Self-Compacting Concrete Mix Design Using Response Surface Methodology. Construction and Building Materials, 317, 125928. https://doi.org/10.1016/j.conbuildmat.2021.125928.
  • Silva, R.V., De Brito, J., & Dhir, R.K., (2015). The Influence of The Use of Recycled Aggregates on the Compressive Strength of Concrete: a review. Eur. J. Environ. Civ. Eng. 19 (7), 825e849. https://doi.org/10.1080/19648189.2014.974831.
  • Silva, R.V., de Brito, J., & Dhir, R.K., 2018. Fresh-State Performance of Recycled Aggregate Concrete: A Review. Construct. Build. Mater. 178, 19e31. https://doi.org/ 10.1016/j.conbuildmat.2018.05.149.
  • Şimşek, B., İç, Y. T., & Şimşek, E. H. (2013). A TOPSIS-Based Taguchi Optimization to Determine Optimal Mixture Proportions of The High Strength Self-Compacting Concrete. Chemometrics and Intelligent Laboratory Systems, 125, 18-32. https://doi.org/10.1016/j.chemolab.2013.03.012.
  • Yan, S., Lin, H.-C., & Liu, Y.C. (2011). Optimal schedule adjustments for supplying ready mixed concrete following incidents, Automation in Construction 20, 1041–1050. https://doi.org/10.1016/j.autcon.2011.04.005.

Geri Dönüştürülmüş Agrega İçeren Kendiliğinden Yerleşen Betonun Mühendislik Özelliklerinin Optimizasyonu

Year 2024, , 459 - 469, 03.06.2024
https://doi.org/10.17780/ksujes.1467224

Abstract

Kendiliğinden yerleşen beton yüksek işlenebilirliğe sahip olmasının yanı sıra mühendislik özellikleri açısından yeterli performansı göstermesi nedeni ile oldukça ilgi gören özel bir beton çeşididir. Bu çalışmada geri dönüştürülmüş agrega içeren kendiliğinden yerleşen beton uygulamalarının yer aldığı literatür çalışmaları dikkate alınarak Tepki Yüzey Metodu ile optimizasyon çalışması gerçekleştirilmiştir. Yürütülen optimizasyon çalışmasında geri dönüştürülmüş ince ve iri agrega yüzdeleri ile su/çimento oranı girdi parametreleri olarak seçilmiştir. Bu kapsamda kendiliğinden yerleşen betonun taze özelliğini yansıtan yayılma çapı değerleri ile sertleşmiş performansını gösteren basınç dayanımı parametreleri irdelenmiştir. Kullanılan bu yöntem sayesinde dikkate alınan girdi değişkenlerinin çıktı parametreleri üzerindeki etkisini yansıtan modeller oluşturulmuştur. Agrega miktarları ve basınç dayanımı maksimize edilmiş olup diğer parametreler serbest bırakılmıştır. Yayılma çapı için ise hedef değer tanımlaması yapılmıştır. Ayrıca gerçekleştirilen varyans analizi sonucunda oluşturulan modellerin anlamlılığı ortaya konulmuştur. Oluşturulan modelin arzu edilebilirlik değeri 0.734 olarak elde edilmiştir. Böylece istenilen düzeye anlamlı bir derecede yaklaşılarak geri dönüştürülmüş agrega içeren kendiliğinden yerleşen beton için optimum tasarım parametrelerine ulaşılmıştır.

References

  • Adamu, M., Haruna, S. I., Ibrahim, Y. E., & Alanazi, H. (2022). Evaluation of the Mechanical Performance of Concrete Containing Calcium Carbide Residue and Nano Silica Using Response Surface Methodology. Environmental Science and Pollution Research, 29(44), 67076-67102. https://doi.org/10.1007/s11356-022-20546-x.
  • Adamu, M., Marouf, M. L., Ibrahim, Y. E., Ahmed, O. S., Alanazi, H., & Marouf, A. L. (2022). Modeling and Optimization of The Mechanical Properties of Date Fiber Reinforced Concrete Containing Silica Fume Using Response Surface Methodology. Case Studies in Construction Materials, 17. https://doi.org/10.1016/j.cscm.2022.e01633.
  • Avci, Y., & Ekmen, A. B. (2023). Artificial Intelligence Assisted Optimization of Rammed Aggregate Pier Supported Raft Foundation Systems Based on Parametric Three-Dimensional Finite Element Analysis. In Structures, Vol. 56, p. 105031. https://doi.org/10.1016/j.istruc.2023.105031.
  • Awolusi, T. F., Oke, O. L., Akinkurolere, O. O., & Sojobi, A. O. (2019). Application of Response Surface Methodology: Predicting and Optimizing The Properties of Concrete Containing Steel Fibre Extracted From Waste Tires With Limestone Powder As Filler. Case studies in Construction materials, 10. https://doi.org/10.1016/j.cscm.2018.e00212.
  • Bayramov, F., Taşdemir, C., & Taşdemir, M.A. (2004). Optimisation of Steel Fibre Reinforced Concretes by Means of Statistical Response Surface Method, Cement and Concrete Composites 26, 665–675. https://doi.org/10.1016/S0958-9465(03)00161-6.
  • Broyles, J. M., Shepherd, M. R., & Brown, N. C. (2022). Design Optimization of Structural–Acoustic Spanning Concrete Elements in Buildings. Journal of Architectural Engineering, 28(1), 04021044. https://doi.org/10.1061/(ASCE)AE.1943-5568.000052.
  • Campos, R. S., Barbosa, M. P., Pimentel, L. L., & Maciel, G. de F. (2018). Influência dos agregados reciclados nas propriedades reológicas e mecânicas do concreto autoadensável. Matéria (Rio de Janeiro), 23(1). doi:10.1590/s1517-707620170001.0300. https://doi.org/10.1590/S1517-707620170001.0300.
  • Concrete, S. C. (2005). The European Guidelines for Self-Compacting Concrete. BIBM, et al, 22, 563.
  • Corinaldesi, V., & Moriconi, G. (2004). Self-Compacting Concrete: A Great Opportunity for Recycling Materials, in: Proceedings of the International RILEM Conference on the Use of Recycled Materials in Building and Structures, 10 p.
  • Corinaldesi, V., & Moriconi, G., (2011). The Role of İndustrial By-Products in Selfcompacting Concrete. Construct. Build. Mater. 25 (8), 3181e3186. https:// doi.org/10.1016/j.conbuildmat.2011.03.001.
  • Design Expert, 2010. Design Expert, Stat-Ease, Minneapolis, USA.
  • Ekmen, A. B., Algin, H. M., & Özen, M. (2020). Strength and Stiffness Optimisation of Fly Ash-Admixed DCM Columns Constructed in Clayey Silty Sand. Transportation Geotechnics, 24, 100364. https://doi.org/10.1016/j.trgeo.2020.100364.
  • Ekmen, A. B., Avci, Y. (2023). Artificial Intelligence-Assisted Optimization of Tunnel Support Systems Based on the Multiple Three-Dimensional Finite Element Analyses Considering the Excavation Stages. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47(3), 1725-1747. https://doi.org/10.1007/s40996-023-01109-7.
  • Evangelista, L., & De Brito, J., (2014). Concrete with Fine Recycled Aggregates: A Review. Eur. J. Environ. Civ. Eng. 18 (2), 129e172. https://doi.org/10.1080/ 19648189.2013.851038.
  • Garcia-Troncoso, N., Li, L., Cheng, Q., Mo, K. H., & Ling, T. C. (2021). Comparative Study on the Properties and High Temperature Resistance of Self-Compacting Concrete With Various Types of Recycled Aggregates. Case Studies in Construction Materials, 15, e00678. https://doi.org/10.1016/j.cscm.2021.e00678.
  • Grdic, Z.J., Toplicic-Curcic, G.A., Despotovic, I.M., & Ristic, N.S. (2010). Properties of Self compacting Concrete Prepared with Coarse Recycled Concrete Aggregate, Constr. Build. Mater. 24 (7), 1129–1133. https://doi.org/10.1016/j.conbuildmat.2009.12.029.
  • Guo, H., Shi, C., Guan, X., Zhu, J., Ding, Y., Ling, T.C., Zhang, H., & Wang, Y., (2018). Durability of Recycled Aggregate Concrete E A Review. Cement Concr. Compos. 89, 251e259. https://doi.org/10.1016/j.cemconcomp.2018.03.008.
  • Güneyisi, E. Gesoğlu, M., Algın, Z., & Yazıcı, H. (2014). Effect of Surface Treatment Methods on the Properties of Self-Compacting Concrete with Recycled Aggregates, Constr. Build. Mater. 64 172–183. https://doi.org/10.1016/j.conbuildmat.2014.04.090.
  • Hameed, M. M., AlOmar, M. K., Baniya, W. J., & AlSaadi, M. A. (2021). Prediction of High-Strength Concrete: High-Order Response Surface Methodology Modeling Approach. Engineering with Computers, 1-14. https://doi.org/10.1007/s42107-021-00362-3.
  • Haque, M., Ray, S., Mita, A. F., Bhattacharjee, S., & Shams, M. J. B. (2021). Prediction and Optimization of the Fresh and Hardened Properties of Concrete Containing Rice Husk Ash and Glass Fiber Using Response Surface Methodology. Case Studies in Construction Materials, 14. https://doi.org/10.1016/j.cscm.2021.e00505.
  • Khargotra, R., Kumar, R., András, K., Fekete, G., & Singh, T. (2022). Thermo-Hydraulic Characterization and Design Optimization of Delta-Shaped Obstacles in Solar Water Heating System Using CRITIC-COPRAS approach. Energy, 261, 125236. https://doi.org/10.1016/j.energy.2022.125236.
  • Kou, S.C., & Poon, C.S. (2009). Properties of Self-Compacting Concrete Prepared with Coarse and Fine Recycled Concrete Aggregates, Cem. Concr. Compos. 31, 622–627. https://doi.org/10.1016/j.cemconcomp.2009.06.005.
  • Mo, K. H., Ling, T. C., & Cheng, Q. (2021). Examining the Influence of Recycled Concrete Aggregate on the Hardened Properties of Self-Compacting Concrete. Waste and Biomass Valorization, 12, 1133-1141. https://doi.org/10.1007/s12649-020-01045-x.
  • Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons.
  • Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley & Sons.
  • Nambiar, E.K.K., & Ramamurthy, K. (2006). Models Relating Mixture Composition to The Density and Strength of Foam Concrete Using Response Surface Methodology, Cement and Concrete Composites 28, 752–760. https://doi.org/10.1016/j.cemconcomp.2006.06.001.
  • P.O. Modani, V.M. Mohitkar, (2014). Self-Compacting Concrete with Recycled Aggregate: a Solution for Sustainable Development, Int. J. Civil. Struct. Eng. 4 (3) 430–440. http://dx.doi.org/10.6088/ijcser.201304010041.
  • Pereira-de-Oliveira, L.A., Nepomuceno, M.C.S., Castro-Gomes, J.P., & Vila, M.F.C. (2014). Permeability Properties of Self-Compacting Concrete with Coarse Recycled Aggregates, Constr. Build. Mater. 51, 113–120. https://doi.org/10.1016/j.conbuildmat.2013.10.061.
  • Sasanipour, H., & Aslani, F. (2020). Durability Properties Evaluation of Self-Compacting Concrete Prepared with Waste Fine and Coarse Recycled Concrete Aggregates. Construction and Building Materials, 236, 117540. https://doi.org/10.1016/j.conbuildmat.2019.117540.
  • Siamardi, K. (2022). Optimization of Fresh and Hardened Properties of Structural Light Weight Self-Compacting Concrete Mix Design Using Response Surface Methodology. Construction and Building Materials, 317, 125928. https://doi.org/10.1016/j.conbuildmat.2021.125928.
  • Silva, R.V., De Brito, J., & Dhir, R.K., (2015). The Influence of The Use of Recycled Aggregates on the Compressive Strength of Concrete: a review. Eur. J. Environ. Civ. Eng. 19 (7), 825e849. https://doi.org/10.1080/19648189.2014.974831.
  • Silva, R.V., de Brito, J., & Dhir, R.K., 2018. Fresh-State Performance of Recycled Aggregate Concrete: A Review. Construct. Build. Mater. 178, 19e31. https://doi.org/ 10.1016/j.conbuildmat.2018.05.149.
  • Şimşek, B., İç, Y. T., & Şimşek, E. H. (2013). A TOPSIS-Based Taguchi Optimization to Determine Optimal Mixture Proportions of The High Strength Self-Compacting Concrete. Chemometrics and Intelligent Laboratory Systems, 125, 18-32. https://doi.org/10.1016/j.chemolab.2013.03.012.
  • Yan, S., Lin, H.-C., & Liu, Y.C. (2011). Optimal schedule adjustments for supplying ready mixed concrete following incidents, Automation in Construction 20, 1041–1050. https://doi.org/10.1016/j.autcon.2011.04.005.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Civil Construction Engineering
Journal Section Civil Engineering
Authors

Şevin Ekmen 0000-0002-2577-696X

Publication Date June 3, 2024
Submission Date April 9, 2024
Acceptance Date April 29, 2024
Published in Issue Year 2024

Cite

APA Ekmen, Ş. (2024). Geri Dönüştürülmüş Agrega İçeren Kendiliğinden Yerleşen Betonun Mühendislik Özelliklerinin Optimizasyonu. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 459-469. https://doi.org/10.17780/ksujes.1467224