Review
BibTex RIS Cite

BATARYA MUHAFAZLARINDA KULLANILABİLEN ELYAF TAKVİYELİ POLİMER KOMPOZİTLERİN ISIL ÖZELLİKLERİNİN İYİLEŞTİRİLMESİ HAKKINDA BİR DERLEME

Year 2024, , 1633 - 1646, 03.12.2024
https://doi.org/10.17780/ksujes.1500573

Abstract

Fiber takviyeli polimer kompozitler, özellikle karbon fiber ile güçlendirilmiş olanlar, batarya muhafazalarında kullanım için umut vaat etmektedir. Elektrikli ve hibrit araçların bataryalarının performansı büyük ölçüde çalışma sıcaklığına bağlı olduğundan, batarya paketinin termal olarak yönetilmesi zorunludur. Bu termal yönetimin verimli olabilmesi için batarya muhafazasının yeterli termal iletkenlik ve termal difüzivite değerlerine sahip olması gerekir. Ancak, elyaf takviyeli polimer kompozit malzemelerin çoğu zayıf termal özelliklere sahiptir. Bu nedenle, bu tür malzemelerin ısıl iletkenlik ve ısıl yayılım değerlerinin artırılması gerekmektedir. Bu makalede, farklı yöntemler uygulayarak elyaf takviyeli polimer kompozitlerin ısıl özelliklerini arttırmayı başaran çalışmalar incelenmiştir. Yöntemler ve elde edilen sonuçlar gözden geçirilmiş ve tartışılmıştır. Ayrıca, potansiyel uygulayıcılara bazı önerilerde bulunulmuştur. Böylece, batarya kutularının ısıl özelliklerini geliştirmek için en uygulanabilir yöntemler belirlenip birbiriyle karşılaştırılabilecektir.

References

  • An, F., Li, X., Min, P., Li, H., Dai, Z., & Yu, Z.-Z. (2018). Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites. Carbon, 126, 119-127. https://doi.org/10.1016/j.carbon.2017.10.011
  • An, F., Li, X., Min, P., Liu, P., Jiang, Z.-G., & Yu, Z.-Z. (2018). Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS applied materials & interfaces, 10(20), 17383-17392. DOI: 10.1021/acsami.8b04230.
  • Ashby, M. F. (2011). Materials Selection in Mechanical Design (4th ed.). ISBN 978-1-85617-663-7
  • AYGÜN, H. H. (2020). Lif Açma İşleminin Cam Elyaf Takviyeli Epoksi Kompozitlerin Mekanik ve Yalıtım Özellikleri Üzerindeki Etkisi. Tekstil ve Mühendis, 27(118), 75-83. https://doi.org/10.7216/1300759920202711803
  • Barani, Z., Mohammadzadeh, A., Geremew, A., Huang, C. Y., Coleman, D., Mangolini, L., Balandin, A. A. (2020). Thermal properties of the binary-filler hybrid composites with graphene and copper nanoparticles. Advanced Functional Materials, 30(8), 1904008. https://doi.org/10.1002/adfm.201904008
  • Biswas, P. K., Liyanage, A. A. H., Jadhav, M., Agarwal, M., & Dalir, H. (2022). Higher strength carbon fiber lithium-ion polymer battery embedded multifunctional composites for structural applications. Polymer Composites, 43(5), 2952-2962. https://doi.org/10.1002/pc.26589
  • Chan, K.-Y., Yang, D., Demir, B., Mouritz, A. P., Lin, H., Jia, B., & Lau, K.-T. (2019). Boosting the electrical and mechanical properties of structural dielectric capacitor composites via gold nanoparticle doping. Composites Part B: Engineering, 178, 107480. https://doi.org/10.1016/j.compositesb.2019.107480
  • Çoşğun, A., Taşçıoğlu, A., & Yılmaz, G. (2021). İnce Film Üretiminde Kimyasal Buhar Biriktirme Yöntemi ve Çeşitleri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(2), 351-363. https://doi.org/10.29048/makufebed.861301
  • E-mobility, Batter Case Materials, (2024). https://www.emobility-engineering.com/battery-case-materials/ Accessed 01.06.24.
  • Gao, Z., & Zhao, L. (2015). Effect of nano-fillers on the thermal conductivity of epoxy composites with micro-Al2O3 particles. Materials & Design (1980-2015), 66, 176-182. https://doi.org/10.1016/j.matdes.2014.10.052
  • Han, Z., & Fina, A. (2011). Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Progress in polymer science, 36(7), 914-944. https://doi.org/10.1016/j.progpolymsci.2010.11.004 Thermtest Instruments, Discovering the Thermal Conductivity of Carbon Fiber, (2020). https://thermtest.com/application/thermal-conductivity-of-carbon-fiber/ Accessed 01.06.24.
  • Ishida, H., & Rimdusit, S. (1998). Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. Thermochimica acta, 320(1-2), 177-186. https://doi.org/10.1016/S0040-6031(98)00463-8
  • Kumlutaş, D., Tavman, I. H., & Çoban, M. T. (2003). Thermal conductivity of particle filled polyethylene composite materials. Composites science and technology, 63(1), 113-117. https://doi.org/10.1016/S0266-3538(02)00194-X
  • Lee, E., Cho, C. H., Hwang, S. H., Kim, M.-G., Han, J. W., Lee, H., & Lee, J. H. (2019). Improving the vertical thermal conductivity of carbon fiber-reinforced epoxy composites by forming layer-by-layer contact of inorganic crystals. Materials, 12(19), 3092. https://doi.org/10.3390/ma12193092
  • Lee, H., Oh, P., Kim, J., Cha, H., Chae, S., Lee, S., & Cho, J. (2019). Advances and prospects of sulfide all-solid-state lithium batteries via one-to-one comparison with conventional liquid lithium ion batteries. Advanced Materials, 31(29), 1900376. https://doi.org/10.1002/adma.201900376
  • Lian, G., Tuan, C.-C., Li, L., Jiao, S., Wang, Q., Moon, K.-S., Wong, C., P., (2016). Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chemistry of Materials, 28(17), 6096-6104. DOI: 10.1021/acs.chemmater.6b01595
  • Liang, J., Saha, M. C., & Altan, M. C. (2013). Effect of carbon nanofibers on thermal conductivity of carbon fiber reinforced composites. Procedia Engineering, 56, 814-820. https://doi.org/10.1016/j.proeng.2013.03.201
  • Loeblein, M., Bolker, A., Tsang, S. H., Atar, N., Uzan-Saguy, C., Verker, R., Teo, E. H. T. (2015). 3D graphene-infused polyimide with enhanced electrothermal performance for long-term flexible space applications. Small, 11(48), 6425-6434. https://doi.org/10.1002/smll.201502670
  • Luo, X., & Chung, D. (1999). Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites. Composites Part B: Engineering, 30(3), 227-231. https://doi.org/10.1016/S1359-8368(98)00065-1
  • Mamunya, Y. P., Davydenko, V., Pissis, P., & Lebedev, E. (2002). Electrical and thermal conductivity of polymers filled with metal powders. European polymer journal, 38(9), 1887-1897. https://doi.org/10.1016/S0014-3057(02)00064-2
  • Martin-Gallego, M., Verdejo, R., Khayet, M., de Zarate, J. M. O., Essalhi, M., & Lopez-Manchado, M. A. (2011). Thermal conductivity of carbon nanotubes and graphene in epoxy nanofluids and nanocomposites. Nanoscale research letters, 6, 1-7. https://doi.org/10.1186/1556-276X-6-610
  • Ouyang, Z., Rao, Q., & Peng, X. (2022). Significantly improving thermal conductivity of carbon fiber polymer composite by weaving highly conductive films. Composites Part A: Applied Science and Manufacturing, 163, 107183. https://doi.org/10.1016/j.compositesa.2022.107183
  • Pety, S. J., Chia, P. X., Carrington, S. M., & White, S. R. (2017). Active cooling of microvascular composites for battery packaging. Smart Materials and Structures, 26(10), 105004. DOI 10.1088/1361-665X/aa84e7
  • Roy, M., Nelson, J., MacCrone, R., Schadler, L. S., Reed, C., & Keefe, R. (2005). Polymer nanocomposite dielectrics-the role of the interface. IEEE transactions on dielectrics and electrical insulation, 12(4), 629-643. DOI: 10.1109/TDEI.2005.1511089
  • Schuster, J., Heider, D., Sharp, K., & Glowania, M. (2008). Thermal conductivities of three-dimensionally woven fabric composites. Composites science and technology, 68(9), 2085-2091. https://doi.org/10.1016/j.compscitech.2008.03.024
  • Şen, F., Palancıoğlu, H., & Aldaş, K. (2010). Polimerik nanokompozitler ve kullanım alanları. https://hdl.handle.net/20.500.12451/6814
  • Takezawa, Y., Akatsuka, M., & Farren, C. (2003). High thermal conductive epoxy resins with controlled high order structure. Paper presented at the Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials (Cat. No. 03CH37417). DOI: 10.1109/ICPADM.2003.1218626
  • Tavman, I. H. (2015). Preparation and characterization of conductive polymer nanocomposites based on ethylene–vinylacetate copolymer (EVA) reinforced with expanded and unexpanded graphite. Advanced Materials Research, 1114, 92-99. https://doi.org/10.4028/www.scientific.net/AMR.1114.92
  • Tian, Z., Sun, J., Wang, S., Zeng, X., Zhou, S., Bai, S., . . . Wong, C.-P. (2018). A thermal interface material based on foam-templated three-dimensional hierarchical porous boron nitride. Journal of Materials Chemistry A, 6(36), 17540-17547. https://doi.org/10.1039/C8TA05638B
  • Tu, H., & Ye, L. (2009). Thermal conductive PS/graphite composites. Polymers for advanced technologies, 20(1), 21-27. https://doi.org/10.1002/pat.1236
  • Uzay, Ç. (2022a). Mechanical and thermal characterization of laminar carbon/epoxy composites modified with magnesium oxide microparticles. Polymer Composites, 43(1), 299-310. https://doi.org/10.1002/pc.26374
  • Uzay, Ç. (2022b). Studies on mechanical and thermal properties of cubic boron nitride (c-BN) nanoparticle filled carbon fiber reinforced polymer composites. Polymer-Plastics Technology and Materials, 61(13), 1439-1455. https://doi.org/10.1080/25740881.2022.2069037
  • Uzay, Ç., Yaykaşlı, H., & Acer, D. C. (2022). Microhardness and Thermal Resistance of Epoxy Composites Reinforced with Graphene Nanoparticle doped Carbon Nanotubes. Journal of NanoScience in Advanced Materials, 1(1), 6-11. https://doi.org/10.5281/zenodo.7464972
  • Venkateshalu, S., & Grace, A. N. (2020). Heterogeneous 3D graphene derivatives for supercapacitors. Journal of The Electrochemical Society, 167(5), 050509. DOI 10.1149/1945-7111/ab6bc5
  • Yan, R., Su, F., Zhang, L., & Li, C. (2019). Highly enhanced thermal conductivity of epoxy composites by constructing dense thermal conductive network with combination of alumina and carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 125, 105496. https://doi.org/10.1016/j.compositesa.2019.105496
  • Yang, J., Li, X., Han, S., Zhang, Y., Min, P., Koratkar, N., & Yu, Z.-Z. (2016). Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability. Journal of Materials Chemistry A, 4(46), 18067-18074. https://doi.org/10.1039/C6TA07869A
  • Yang, J., Li, X., Han, S., Yang, R., Min, P., & Yu, Z.-Z. (2018). High-quality graphene aerogels for thermally conductive phase change composites with excellent shape stability. Journal of Materials Chemistry A, 6(14), 5880-5886. https://doi.org/10.1039/C8TA00078F
  • Ye, W., Wei, Q., Zhang, L., Li, H., Luo, J., Ma, L., Zhou, K. (2018). Macroporous diamond foam: a novel design of 3D interconnected heat conduction network for thermal management. Materials & Design, 156, 32-41. https://doi.org/10.1016/j.matdes.2018.06.017
  • Yu, C., Zhang, J., Li, Z., Tian, W., Wang, L., Luo, J., Yao, Y. (2017). Enhanced through-plane thermal conductivity of boron nitride/epoxy composites. Composites Part A: Applied Science and Manufacturing, 98, 25-31. https://doi.org/10.1016/j.compositesa.2017.03.012
  • Yu, G.-C., Wu, L.-Z., Feng, L.-J., & Yang, W. (2016). Thermal and mechanical properties of carbon fiber polymer-matrix composites with a 3D thermal conductive pathway. Composite Structures, 149, 213-219. https://doi.org/10.1016/j.compstruct.2016.04.010
  • Yu, L., Gao, S., Yang, D., Wei, Q., & Zhang, L. (2021). Improved thermal conductivity of polymer composites by noncovalent modification of boron nitride via tannic acid chemistry. Industrial & Engineering Chemistry Research, 60(34), 12570-12578. https://doi.org/10.1021/acs.iecr.1c02217
  • Zhang, F., Feng, Y., & Feng, W. (2020). Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms. Materials Science and Engineering: R: Reports, 142, 100580. https://doi.org/10.1016/j.mser.2020.100580
  • Zhang, S., Gao, L., Han, J., Li, Z., Zu, G., Ran, X., & Sun, Y. (2019). Through-thickness thermal conductivity enhancement and tensile response of carbon fiber-reinforced polymer composites. Composites Part B: Engineering, 165, 183-192. https://doi.org/10.1016/j.compositesb.2018.11.114
  • Zhang, X., Fujiwara, S., & Fujii, M. (2000). Measurements of thermal conductivity and electrical conductivity of a single carbon fiber. International Journal of Thermophysics, 21, 965-980. https://doi.org/10.1023/A:1006674510648
  • Zheng, F., Yin, Z., Xia, H., Bai, G., & Zhang, Y. (2017). Porous MnO@ C nanocomposite derived from metal-organic frameworks as anode materials for long-life lithium-ion batteries. Chemical Engineering Journal, 327, 474-480. https://doi.org/10.1016/j.cej.2017.06.097
  • Zheng, X., Kim, S., & Park, C. W. (2019). Enhancement of thermal conductivity of carbon fiber-reinforced polymer composite with copper and boron nitride particles. Composites Part A: Applied Science and Manufacturing, 121, 449-456. https://doi.org/10.1016/j.compositesa.2019.03.030

ENHANCING THERMAL PROPERTIES OF FIBER-REINFORCED POLYMER COMPOSITES TO BE USED IN BATTERY CASINGS: A REVIEW

Year 2024, , 1633 - 1646, 03.12.2024
https://doi.org/10.17780/ksujes.1500573

Abstract

Fiber-reinforced polymer composites, particularly those reinforced with carbon fiber, hold significant promise for use in battery casings. Since the performance of the batteries of electric and hybrid vehicles is highly dependent on the operating temperature, the thermal management system of the battery pack is essential. For this thermal management to be efficient, the battery enclosure must have sufficient thermal conductivity and thermal diffusivity values. However, most of the fiber-reinforced polymer composite materials have poor thermal properties. Thus, it is necessary to increase the thermal conductivity and thermal diffusivity values of such materials. In this paper, studies that have succeeded in increasing the thermal properties of fiber-reinforced polymer composites by applying different methods have been examined. The methods and obtained results are reviewed and discussed. Also, some suggestions are given to the potential applicators. Therefore, the most applicable methods, to enhance the thermal properties of the composite battery cases, can be determined and compared with one another.

References

  • An, F., Li, X., Min, P., Li, H., Dai, Z., & Yu, Z.-Z. (2018). Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites. Carbon, 126, 119-127. https://doi.org/10.1016/j.carbon.2017.10.011
  • An, F., Li, X., Min, P., Liu, P., Jiang, Z.-G., & Yu, Z.-Z. (2018). Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS applied materials & interfaces, 10(20), 17383-17392. DOI: 10.1021/acsami.8b04230.
  • Ashby, M. F. (2011). Materials Selection in Mechanical Design (4th ed.). ISBN 978-1-85617-663-7
  • AYGÜN, H. H. (2020). Lif Açma İşleminin Cam Elyaf Takviyeli Epoksi Kompozitlerin Mekanik ve Yalıtım Özellikleri Üzerindeki Etkisi. Tekstil ve Mühendis, 27(118), 75-83. https://doi.org/10.7216/1300759920202711803
  • Barani, Z., Mohammadzadeh, A., Geremew, A., Huang, C. Y., Coleman, D., Mangolini, L., Balandin, A. A. (2020). Thermal properties of the binary-filler hybrid composites with graphene and copper nanoparticles. Advanced Functional Materials, 30(8), 1904008. https://doi.org/10.1002/adfm.201904008
  • Biswas, P. K., Liyanage, A. A. H., Jadhav, M., Agarwal, M., & Dalir, H. (2022). Higher strength carbon fiber lithium-ion polymer battery embedded multifunctional composites for structural applications. Polymer Composites, 43(5), 2952-2962. https://doi.org/10.1002/pc.26589
  • Chan, K.-Y., Yang, D., Demir, B., Mouritz, A. P., Lin, H., Jia, B., & Lau, K.-T. (2019). Boosting the electrical and mechanical properties of structural dielectric capacitor composites via gold nanoparticle doping. Composites Part B: Engineering, 178, 107480. https://doi.org/10.1016/j.compositesb.2019.107480
  • Çoşğun, A., Taşçıoğlu, A., & Yılmaz, G. (2021). İnce Film Üretiminde Kimyasal Buhar Biriktirme Yöntemi ve Çeşitleri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(2), 351-363. https://doi.org/10.29048/makufebed.861301
  • E-mobility, Batter Case Materials, (2024). https://www.emobility-engineering.com/battery-case-materials/ Accessed 01.06.24.
  • Gao, Z., & Zhao, L. (2015). Effect of nano-fillers on the thermal conductivity of epoxy composites with micro-Al2O3 particles. Materials & Design (1980-2015), 66, 176-182. https://doi.org/10.1016/j.matdes.2014.10.052
  • Han, Z., & Fina, A. (2011). Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Progress in polymer science, 36(7), 914-944. https://doi.org/10.1016/j.progpolymsci.2010.11.004 Thermtest Instruments, Discovering the Thermal Conductivity of Carbon Fiber, (2020). https://thermtest.com/application/thermal-conductivity-of-carbon-fiber/ Accessed 01.06.24.
  • Ishida, H., & Rimdusit, S. (1998). Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. Thermochimica acta, 320(1-2), 177-186. https://doi.org/10.1016/S0040-6031(98)00463-8
  • Kumlutaş, D., Tavman, I. H., & Çoban, M. T. (2003). Thermal conductivity of particle filled polyethylene composite materials. Composites science and technology, 63(1), 113-117. https://doi.org/10.1016/S0266-3538(02)00194-X
  • Lee, E., Cho, C. H., Hwang, S. H., Kim, M.-G., Han, J. W., Lee, H., & Lee, J. H. (2019). Improving the vertical thermal conductivity of carbon fiber-reinforced epoxy composites by forming layer-by-layer contact of inorganic crystals. Materials, 12(19), 3092. https://doi.org/10.3390/ma12193092
  • Lee, H., Oh, P., Kim, J., Cha, H., Chae, S., Lee, S., & Cho, J. (2019). Advances and prospects of sulfide all-solid-state lithium batteries via one-to-one comparison with conventional liquid lithium ion batteries. Advanced Materials, 31(29), 1900376. https://doi.org/10.1002/adma.201900376
  • Lian, G., Tuan, C.-C., Li, L., Jiao, S., Wang, Q., Moon, K.-S., Wong, C., P., (2016). Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chemistry of Materials, 28(17), 6096-6104. DOI: 10.1021/acs.chemmater.6b01595
  • Liang, J., Saha, M. C., & Altan, M. C. (2013). Effect of carbon nanofibers on thermal conductivity of carbon fiber reinforced composites. Procedia Engineering, 56, 814-820. https://doi.org/10.1016/j.proeng.2013.03.201
  • Loeblein, M., Bolker, A., Tsang, S. H., Atar, N., Uzan-Saguy, C., Verker, R., Teo, E. H. T. (2015). 3D graphene-infused polyimide with enhanced electrothermal performance for long-term flexible space applications. Small, 11(48), 6425-6434. https://doi.org/10.1002/smll.201502670
  • Luo, X., & Chung, D. (1999). Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites. Composites Part B: Engineering, 30(3), 227-231. https://doi.org/10.1016/S1359-8368(98)00065-1
  • Mamunya, Y. P., Davydenko, V., Pissis, P., & Lebedev, E. (2002). Electrical and thermal conductivity of polymers filled with metal powders. European polymer journal, 38(9), 1887-1897. https://doi.org/10.1016/S0014-3057(02)00064-2
  • Martin-Gallego, M., Verdejo, R., Khayet, M., de Zarate, J. M. O., Essalhi, M., & Lopez-Manchado, M. A. (2011). Thermal conductivity of carbon nanotubes and graphene in epoxy nanofluids and nanocomposites. Nanoscale research letters, 6, 1-7. https://doi.org/10.1186/1556-276X-6-610
  • Ouyang, Z., Rao, Q., & Peng, X. (2022). Significantly improving thermal conductivity of carbon fiber polymer composite by weaving highly conductive films. Composites Part A: Applied Science and Manufacturing, 163, 107183. https://doi.org/10.1016/j.compositesa.2022.107183
  • Pety, S. J., Chia, P. X., Carrington, S. M., & White, S. R. (2017). Active cooling of microvascular composites for battery packaging. Smart Materials and Structures, 26(10), 105004. DOI 10.1088/1361-665X/aa84e7
  • Roy, M., Nelson, J., MacCrone, R., Schadler, L. S., Reed, C., & Keefe, R. (2005). Polymer nanocomposite dielectrics-the role of the interface. IEEE transactions on dielectrics and electrical insulation, 12(4), 629-643. DOI: 10.1109/TDEI.2005.1511089
  • Schuster, J., Heider, D., Sharp, K., & Glowania, M. (2008). Thermal conductivities of three-dimensionally woven fabric composites. Composites science and technology, 68(9), 2085-2091. https://doi.org/10.1016/j.compscitech.2008.03.024
  • Şen, F., Palancıoğlu, H., & Aldaş, K. (2010). Polimerik nanokompozitler ve kullanım alanları. https://hdl.handle.net/20.500.12451/6814
  • Takezawa, Y., Akatsuka, M., & Farren, C. (2003). High thermal conductive epoxy resins with controlled high order structure. Paper presented at the Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials (Cat. No. 03CH37417). DOI: 10.1109/ICPADM.2003.1218626
  • Tavman, I. H. (2015). Preparation and characterization of conductive polymer nanocomposites based on ethylene–vinylacetate copolymer (EVA) reinforced with expanded and unexpanded graphite. Advanced Materials Research, 1114, 92-99. https://doi.org/10.4028/www.scientific.net/AMR.1114.92
  • Tian, Z., Sun, J., Wang, S., Zeng, X., Zhou, S., Bai, S., . . . Wong, C.-P. (2018). A thermal interface material based on foam-templated three-dimensional hierarchical porous boron nitride. Journal of Materials Chemistry A, 6(36), 17540-17547. https://doi.org/10.1039/C8TA05638B
  • Tu, H., & Ye, L. (2009). Thermal conductive PS/graphite composites. Polymers for advanced technologies, 20(1), 21-27. https://doi.org/10.1002/pat.1236
  • Uzay, Ç. (2022a). Mechanical and thermal characterization of laminar carbon/epoxy composites modified with magnesium oxide microparticles. Polymer Composites, 43(1), 299-310. https://doi.org/10.1002/pc.26374
  • Uzay, Ç. (2022b). Studies on mechanical and thermal properties of cubic boron nitride (c-BN) nanoparticle filled carbon fiber reinforced polymer composites. Polymer-Plastics Technology and Materials, 61(13), 1439-1455. https://doi.org/10.1080/25740881.2022.2069037
  • Uzay, Ç., Yaykaşlı, H., & Acer, D. C. (2022). Microhardness and Thermal Resistance of Epoxy Composites Reinforced with Graphene Nanoparticle doped Carbon Nanotubes. Journal of NanoScience in Advanced Materials, 1(1), 6-11. https://doi.org/10.5281/zenodo.7464972
  • Venkateshalu, S., & Grace, A. N. (2020). Heterogeneous 3D graphene derivatives for supercapacitors. Journal of The Electrochemical Society, 167(5), 050509. DOI 10.1149/1945-7111/ab6bc5
  • Yan, R., Su, F., Zhang, L., & Li, C. (2019). Highly enhanced thermal conductivity of epoxy composites by constructing dense thermal conductive network with combination of alumina and carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 125, 105496. https://doi.org/10.1016/j.compositesa.2019.105496
  • Yang, J., Li, X., Han, S., Zhang, Y., Min, P., Koratkar, N., & Yu, Z.-Z. (2016). Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability. Journal of Materials Chemistry A, 4(46), 18067-18074. https://doi.org/10.1039/C6TA07869A
  • Yang, J., Li, X., Han, S., Yang, R., Min, P., & Yu, Z.-Z. (2018). High-quality graphene aerogels for thermally conductive phase change composites with excellent shape stability. Journal of Materials Chemistry A, 6(14), 5880-5886. https://doi.org/10.1039/C8TA00078F
  • Ye, W., Wei, Q., Zhang, L., Li, H., Luo, J., Ma, L., Zhou, K. (2018). Macroporous diamond foam: a novel design of 3D interconnected heat conduction network for thermal management. Materials & Design, 156, 32-41. https://doi.org/10.1016/j.matdes.2018.06.017
  • Yu, C., Zhang, J., Li, Z., Tian, W., Wang, L., Luo, J., Yao, Y. (2017). Enhanced through-plane thermal conductivity of boron nitride/epoxy composites. Composites Part A: Applied Science and Manufacturing, 98, 25-31. https://doi.org/10.1016/j.compositesa.2017.03.012
  • Yu, G.-C., Wu, L.-Z., Feng, L.-J., & Yang, W. (2016). Thermal and mechanical properties of carbon fiber polymer-matrix composites with a 3D thermal conductive pathway. Composite Structures, 149, 213-219. https://doi.org/10.1016/j.compstruct.2016.04.010
  • Yu, L., Gao, S., Yang, D., Wei, Q., & Zhang, L. (2021). Improved thermal conductivity of polymer composites by noncovalent modification of boron nitride via tannic acid chemistry. Industrial & Engineering Chemistry Research, 60(34), 12570-12578. https://doi.org/10.1021/acs.iecr.1c02217
  • Zhang, F., Feng, Y., & Feng, W. (2020). Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms. Materials Science and Engineering: R: Reports, 142, 100580. https://doi.org/10.1016/j.mser.2020.100580
  • Zhang, S., Gao, L., Han, J., Li, Z., Zu, G., Ran, X., & Sun, Y. (2019). Through-thickness thermal conductivity enhancement and tensile response of carbon fiber-reinforced polymer composites. Composites Part B: Engineering, 165, 183-192. https://doi.org/10.1016/j.compositesb.2018.11.114
  • Zhang, X., Fujiwara, S., & Fujii, M. (2000). Measurements of thermal conductivity and electrical conductivity of a single carbon fiber. International Journal of Thermophysics, 21, 965-980. https://doi.org/10.1023/A:1006674510648
  • Zheng, F., Yin, Z., Xia, H., Bai, G., & Zhang, Y. (2017). Porous MnO@ C nanocomposite derived from metal-organic frameworks as anode materials for long-life lithium-ion batteries. Chemical Engineering Journal, 327, 474-480. https://doi.org/10.1016/j.cej.2017.06.097
  • Zheng, X., Kim, S., & Park, C. W. (2019). Enhancement of thermal conductivity of carbon fiber-reinforced polymer composite with copper and boron nitride particles. Composites Part A: Applied Science and Manufacturing, 121, 449-456. https://doi.org/10.1016/j.compositesa.2019.03.030
There are 46 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors, Composite and Hybrid Materials
Journal Section Mechanical Engineering
Authors

Orhun Cem Gökciler 0009-0005-9281-2077

Necdet Geren 0000-0002-9645-0852

Publication Date December 3, 2024
Submission Date June 13, 2024
Acceptance Date July 29, 2024
Published in Issue Year 2024

Cite

APA Gökciler, O. C., & Geren, N. (2024). ENHANCING THERMAL PROPERTIES OF FIBER-REINFORCED POLYMER COMPOSITES TO BE USED IN BATTERY CASINGS: A REVIEW. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 1633-1646. https://doi.org/10.17780/ksujes.1500573