Research Article
BibTex RIS Cite

DIRECT HF ETCHING-DERIVED Ti3C2TX: A POTENT ADSORBENT FOR BASIC RED 46 DYE

Year 2024, , 1571 - 1581, 03.12.2024
https://doi.org/10.17780/ksujes.1500888

Abstract

Dye contamination poses a significant threat to water sources and ecosystems, necessitating the development of efficient treatment methods. Basic Red 46 (BR 46), a highly toxic and persistent azo dye, presents specific challenges in removal from water resources. This study investigates the adsorption efficiency of Ti3C2Tx (Titanium Carbide) MXene, synthesized via direct HF (Hydrofluoric acid) etching, for BR 46 removal. The physicochemical properties of Ti3C2Tx were characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Additionally, the effects of pH, MXene amount, and initial BR 46 concentration on BR 46 adsorption were also investigated. The results show a maximum BR 46 removal efficiency of 99.98% at pH 2, 4 g/L Ti3C2Tx dose, 50 mg/L BR 46 concentration, and 90 min contact time. This research underscores the potential of Ti3C2Tx MXene as a potent adsorbent for BR 46 dye removal, offering insights for future water treatment applications.

Ethical Statement

There is no need for an ethics committee approval in the prepared article. There is no conflict of interest with any person/institution in the prepared article

References

  • Abdollahi Ghahi, N., Nohekhan, M., Rezazadeh Azari, F., Rezaei Fard, B., Bakhtiari Ramezani, M., Beigmohammadi, N., … Abdollahi Dargah, M. (2022). Degradation of basic red 46 dye from color wastewater using cold atmospheric plasma. Journal of Nuclear Research and Applications, 2(4), 21–24. https://doi.org/https://doi.org/10.24200/jon.2022.1029
  • Adnan Maykhan, N., Alsalhy, Q. F., & Bakhtiari, O. (2023). Incorporation of graphene oxide nanosheets into polyethersulfone membranes to improve their separation performance and antifouling characteristics for Congo red removal. Water Environment Research, 95(5), e10866. https://doi.org/https://doi.org/10.1002/wer.10866
  • Agarwal, P., & Rani, R. (2022). Strategic management of contaminated water bodies: Omics, genome-editing and other recent advances in phytoremediation. Environmental Technology & Innovation, 27, 102463. https://doi.org/https://doi.org/10.1016/j.eti.2022.102463
  • Aguiar, J. E., Bezerra, B. T. C., Siqueira, A. C. A., Barrera, D., Sapag, K., Azevedo, D. C. S., … Silva Jr, I. J. (2014). Improvement in the adsorption of anionic and cationic dyes from aqueous solutions: A comparative study using aluminium pillared clays and activated carbon. Separation Science and Technology, 49(5), 741–751. https://doi.org/https://doi.org/10.1080/01496395.2013.862720
  • Allirani, S. (2022). Smart and Secure Dyeing Industrial Water Pollution Monitoring Using IoT. International Journal of Hyperconnectivity and the Internet of Things (IJHIoT), 6(1), 1–5. https://doi.org/https://doi.org/10.4018/ijhiot.305227
  • Banjare, M. K., Behera, K., & Banjare, R. K. (2023). Carbon Allotropes in Other Metals (Cu, Zn, Fe etc.) Removal. Carbon Allotropes and Composites: Materials for Environment Protection and Remediation, 113–154. https://doi.org/https://doi.org/10.1002/9781394167913.ch7
  • Bilal, M., Khan, U., & Ihsanullah, I. (2023). MXenes: The Emerging Adsorbents for the Removal of Dyes from Water. Journal of Molecular Liquids, 122377. https://doi.org/https://doi.org/10.1016/j.molliq.2023.122377
  • Devasia, S., Anand, S., & Nair, A. J. (2022). Laccase mediated bioremediation of industrial dyes by a potent strain of Arthrographis sp. International Journal of Environment and Waste Management, 29(3), 278–290. https://doi.org/https://doi.org/10.1504/ijewm.2022.122679
  • Ghorbani, M., Eisazadeh, H., & Ghoreyshi, A. A. (2012). Removal of zinc ions from aqueous solution using polyaniline nanocomposite coated on rice husk. Iranica Journal of Energy & Environment, 3(1). https://doi.org/https://doi.org/10.5829/idosi.ijee.2012.03.01.3343
  • Ghosh, S., & Sarkar, B. (2022). Emerging dye contaminants of industrial origin and their enzyme-assisted biodegradation. In Biodegradation and Detoxification of Micropollutants in Industrial Wastewater (pp. 79–102). Elsevier. https://doi.org/https://doi.org/10.1016/b978-0-323-88507-2.00005-1
  • Gopalram, K., Kapoor, A., Kumar, P. S., Sunil, A., & Rangasamy, G. (2023). MXenes and MXene-Based Materials for Removal and Detection of Water Contaminants: A Review. Industrial & Engineering Chemistry Research, 62(17), 6559–6583. https://doi.org/https://doi.org/10.1021/acs.iecr.3c00595
  • Hashemi, S. H., & Kaykhaii, M. (2022). Azo dyes: sources, occurrence, toxicity, sampling, analysis, and their removal methods. In Emerging freshwater pollutants (pp. 267–287). Elsevier. https://doi.org/https://doi.org/10.1016/b978-0-12-822850-0.00013-2
  • Janjhi, F. A., Ihsanullah, I., Bilal, M., Castro-Muñoz, R., Boczkaj, G., & Gallucci, F. (2023). MXene-based materials for removal of antibiotics and heavy metals from wastewater–A review. Water Resources and Industry, 100202. https://doi.org/https://doi.org/10.1016/j.wri.2023.100202
  • Kamsonlian, S., & Agarwal, V. (2023). Review on synthesis of plant-mediated green iron nanoparticles and their application for decolorization of dyes. Materials Today: Proceedings, 78, 99–107. https://doi.org/https://doi.org/10.1016/j.matpr.2022.11.308
  • Lekhak, U. M. (2023). Ecotoxicity of synthetic dyes. In Current Developments in Bioengineering and Biotechnology (pp. 45–67). Elsevier. https://doi.org/https://doi.org/10.1016/b978-0-323-91235-8.00021-8
  • Li, Y., Luo, H., Ji, W., Li, S., Nian, P., Xu, N., … Wei, Y. (2023). Visible-light-driven photocatalytic ZnO@ Ti3C2Tx MXene nanofiltration membranes for enhanced organic dyes removal. Separation and Purification Technology, 124420. https://doi.org/https://doi.org/10.1016/j.seppur.2023.124420
  • Ma, Q., Gao, J., Moussa, B., Young, J., Zhao, M., & Zhang, W. (2023). Electrosorption, Desorption, and Oxidation of Perfluoroalkyl Carboxylic Acids (PFCAs) via MXene-Based Electrocatalytic Membranes. ACS Applied Materials & Interfaces. https://doi.org/https://doi.org/10.1021/acsami.3c03991
  • Maheshwari, K., Agrawal, M., & Gupta, A. B. (2021). Dye pollution in water and wastewater. Novel Materials for Dye-Containing Wastewater Treatment, 1–25. https://doi.org/https://doi.org/10.1007/978-981-16-2892-4_1
  • Mustafa, S., Jamil, K., Zhang, L., & Girmay, M. B. (2022). Does Public Awareness Matter to Achieve the UN’s Sustainable Development Goal 6: Clean Water for Everyone? Journal of Environmental and Public Health, 2022. https://doi.org/https://doi.org/10.1155/2022/8445890
  • Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., … Barsoum, M. W. (2023). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. In MXenes (pp. 15–29). Jenny Stanford Publishing. https://doi.org/https://dx.doi.org/10.1201/9781003306511-4
  • Obayomi, K. S., Lau, S. Y., Danquah, M. K., Zhang, J., Chiong, T., Obayomi, O. V., … Rahman, M. M. (2024). A response surface methodology approach for the removal of methylene blue dye from wastewater using sustainable and cost-effective adsorbent. Process Safety and Environmental Protection. https://doi.org/https://doi.org/10.1016/j.psep.2024.01.106
  • Pouramini, Z., Mousavi, S. M., Babapoor, A., Hashemi, S. A., Pynadathu Rumjit, N., Garg, S., … Chiang, W.-H. (2023). Recent Advances in MXene-Based Nanocomposites for Wastewater Purification and Water Treatment: A Review. Water, 15(7), 1267. https://doi.org/https://doi.org/10.3390/w15071267
  • Qing, Q., Shi, X., Hu, S., Li, L., Huang, T., Zhang, N., & Wang, Y. (2023). Synchronously Enhanced Removal Ability and Stability of MXene through Biomimetic Modification. Langmuir, 39(27), 9453–9467. https://doi.org/10.1021/acs.langmuir.3c00987
  • Rana, G., Dhiman, P., Kumar, A., Sharma, G., Verma, Y., & Chauhan, A. (2023). Functionalization of two-dimensional MXene-based nanomaterials for water purifications and energy conversion applications: A review. Materials Science in Semiconductor Processing, 165, 107645. https://doi.org/https://doi.org/10.1016/j.mssp.2023.107645
  • Saad, I., Ralha, N., Abukhadra, M. R., Al Zoubi, W., & Ko, Y. G. (2023). Recent advances in photocatalytic oxidation techniques for decontamination of water. Journal of Water Process Engineering, 52, 103572. https://doi.org/https://doi.org/10.1016/j.jwpe.2023.103572
  • Sadat, H., Guettai, N., Berkani, M., Hoang, H. Y., Shanmuganathan, R., Pugazhendhi, A., & Kadmi, Y. (2023). Recent advances in photochemical-based nanomaterial processes for mitigation of emerging contaminants from aqueous solutions. Applied Nanoscience, 13(6), 3905–3924. https://doi.org/https://doi.org/10.1007/s13204-022-02627-y
  • Sharma, P., & Qanungo, K. (2022). Challenges in Effluents Treatment Containing Dyes. Adv Res Text Eng, 7(2), 1075. https://doi.org/https://doi.org/10.26420/advrestexteng.2022.1075
  • Solangi, N. H., Karri, R. R., Mubarak, N. M., Mazari, S. A., Jatoi, A. S., & Koduru, J. R. (2023). Emerging 2D MXene-based adsorbents for hazardous pollutants removal. Desalination, 549, 116314. https://doi.org/https://doi.org/10.1016/j.desal.2022.116314
  • Tawalbeh, M., Mohammed, S., Al-Othman, A., Yusuf, M., Mofijur, M., & Kamyab, H. (2023). MXenes and MXene-based materials for removal of pharmaceutical compounds from wastewater: Critical review. Environmental Research, 115919. https://doi.org/https://doi.org/10.1016/j.envres.2023.115919
  • Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the Total Environment, 717, 137222. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.137222
  • Verma, A. K., Karande, S., & Mathur, A. (2022). Role of biofilms to curb contamination in water bodies. In Relationship Between Microbes and the Environment for Sustainable Ecosystem Services, Volume 2 (pp. 77–93). Elsevier. https://doi.org/https://doi.org/10.1016/b978-0-323-89937-6.00006-1
  • Wang, R., Cao, H., Yao, C., Peng, C., Qiu, J., Dou, K., … Wang, W. (2023). Construction of alkalized MXene-supported CoFe2O4/CS composites with super-strong adsorption capacity to remove toxic dyes from aqueous solution. Applied Surface Science, 624, 157091. https://doi.org/https://doi.org/10.1016/j.apsusc.2023.157091
  • Wang, Y., Gao, X., Zhang, L., Wu, X., Wang, Q., Luo, C., & Wu, G. (2019). Synthesis of Ti3C2/Fe3O4/PANI hierarchical architecture composite as an efficient wide-band electromagnetic absorber. Applied Surface Science, 480, 830–838. https://doi.org/https://doi.org/10.1016/j.apsusc.2019.03.049
  • Wiśniewska, M., Chibowski, S., Wawrzkiewicz, M., Onyszko, M., & Bogatyrov, V. (2022). CI Basic Red 46 removal from sewage by carbon and silica based composite: equilibrium, kinetic and electrokinetic studies. Molecules, 27(3), 1043. https://doi.org/https://doi.org/10.3390/molecules27031043
  • Wong, S., Ghafar, N. A., Ngadi, N., Razmi, F. A., Inuwa, I. M., Mat, R., & Amin, N. A. S. (2020). Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Scientific Reports, 10(1), 2928. https://doi.org/https://doi.org/10.1038/s41598-020-60021-6
  • Yan, J., Liu, P. F., Wen, H. X., & Liu, H. J. (2022). Effective Removal of Basic Red 46 with Ti3C2 Powder Modified with Citric acid. ChemistrySelect, 7(29), e202201733. https://doi.org/https://doi.org/10.1002/slct.202201733
  • Zhang, G., Wang, T., Xu, Z., Liu, M., Shen, C., & Meng, Q. (2020). Synthesis of amino-functionalized Ti 3 C 2 T x MXene by alkalization-grafting modification for efficient lead adsorption. Chemical Communications, 56(76), 11283–11286. https://doi.org/https://doi.org/10.1039/d0cc04265j
  • Zhang, Y., Luo, J., Feng, B., Xu, H., Sun, Y., Gu, X., … Ren, H. (2023). Delamination of multilayer Ti3C2Tx MXene alters its adsorpiton and reduction of heavy metals in water. Environmental Pollution, 330, 121777. https://doi.org/https://doi.org/10.1016/j.envpol.2023.121777

DOĞRUDAN HF AŞINDIRMASIYLA ELDE EDİLMİŞ Ti3C2TX: BASIC RED 46 BOYASI İÇİN GÜÇLÜ BİR ADSORBAN

Year 2024, , 1571 - 1581, 03.12.2024
https://doi.org/10.17780/ksujes.1500888

Abstract

Boya kirliliği, su kaynakları ve ekosistemler için önemli bir tehdit oluşturmakta ve etkili arıtma yöntemlerinin geliştirilmesini gerektirmektedir. Oldukça toksik ve kalıcı bir azo boyası olan Basic Red 46 (BR 46), su kaynaklarından uzaklaştırılmasında belirli zorluklar ortaya çıkarmaktadır. Bu çalışmada, BR 46 giderimi için doğrudan HF (Hidroflorik asit) aşındırma yoluyla sentezlenen Ti3C2Tx (Titanyum Karbür) MXene'nin adsorpsiyon verimliliği araştırılmıştır. Ti3C2Tx'in fizikokimyasal özellikleri, Fourier dönüşümlü kızılötesi (FTIR) spektroskopisi, X-ışını difraktometresi (XRD) ve taramalı elektron mikroskobu (SEM) kullanılarak karakterize edilmiştir. Ayrıca pH, MXene miktarı ve başlangıç BR 46 konsantrasyonunun BR 46 adsorpsiyonu üzerindeki etkileri de araştırılmıştır. Sonuçlar, pH 2'de, 4 g/L Ti3C2Tx dozunda, 50 mg/L BR 46 konsantrasyonunda ve 90 dakika temas süresinde %99,98'lik maksimum BR 46 giderim verimliliğini gösterir. Bu araştırma, Ti3C2Tx MXene'nin BR 46 boya giderimi için güçlü bir adsorban olarak potansiyelinin altını çizerek gelecekteki su arıtma uygulamaları için öngörüler sunmaktadır.

References

  • Abdollahi Ghahi, N., Nohekhan, M., Rezazadeh Azari, F., Rezaei Fard, B., Bakhtiari Ramezani, M., Beigmohammadi, N., … Abdollahi Dargah, M. (2022). Degradation of basic red 46 dye from color wastewater using cold atmospheric plasma. Journal of Nuclear Research and Applications, 2(4), 21–24. https://doi.org/https://doi.org/10.24200/jon.2022.1029
  • Adnan Maykhan, N., Alsalhy, Q. F., & Bakhtiari, O. (2023). Incorporation of graphene oxide nanosheets into polyethersulfone membranes to improve their separation performance and antifouling characteristics for Congo red removal. Water Environment Research, 95(5), e10866. https://doi.org/https://doi.org/10.1002/wer.10866
  • Agarwal, P., & Rani, R. (2022). Strategic management of contaminated water bodies: Omics, genome-editing and other recent advances in phytoremediation. Environmental Technology & Innovation, 27, 102463. https://doi.org/https://doi.org/10.1016/j.eti.2022.102463
  • Aguiar, J. E., Bezerra, B. T. C., Siqueira, A. C. A., Barrera, D., Sapag, K., Azevedo, D. C. S., … Silva Jr, I. J. (2014). Improvement in the adsorption of anionic and cationic dyes from aqueous solutions: A comparative study using aluminium pillared clays and activated carbon. Separation Science and Technology, 49(5), 741–751. https://doi.org/https://doi.org/10.1080/01496395.2013.862720
  • Allirani, S. (2022). Smart and Secure Dyeing Industrial Water Pollution Monitoring Using IoT. International Journal of Hyperconnectivity and the Internet of Things (IJHIoT), 6(1), 1–5. https://doi.org/https://doi.org/10.4018/ijhiot.305227
  • Banjare, M. K., Behera, K., & Banjare, R. K. (2023). Carbon Allotropes in Other Metals (Cu, Zn, Fe etc.) Removal. Carbon Allotropes and Composites: Materials for Environment Protection and Remediation, 113–154. https://doi.org/https://doi.org/10.1002/9781394167913.ch7
  • Bilal, M., Khan, U., & Ihsanullah, I. (2023). MXenes: The Emerging Adsorbents for the Removal of Dyes from Water. Journal of Molecular Liquids, 122377. https://doi.org/https://doi.org/10.1016/j.molliq.2023.122377
  • Devasia, S., Anand, S., & Nair, A. J. (2022). Laccase mediated bioremediation of industrial dyes by a potent strain of Arthrographis sp. International Journal of Environment and Waste Management, 29(3), 278–290. https://doi.org/https://doi.org/10.1504/ijewm.2022.122679
  • Ghorbani, M., Eisazadeh, H., & Ghoreyshi, A. A. (2012). Removal of zinc ions from aqueous solution using polyaniline nanocomposite coated on rice husk. Iranica Journal of Energy & Environment, 3(1). https://doi.org/https://doi.org/10.5829/idosi.ijee.2012.03.01.3343
  • Ghosh, S., & Sarkar, B. (2022). Emerging dye contaminants of industrial origin and their enzyme-assisted biodegradation. In Biodegradation and Detoxification of Micropollutants in Industrial Wastewater (pp. 79–102). Elsevier. https://doi.org/https://doi.org/10.1016/b978-0-323-88507-2.00005-1
  • Gopalram, K., Kapoor, A., Kumar, P. S., Sunil, A., & Rangasamy, G. (2023). MXenes and MXene-Based Materials for Removal and Detection of Water Contaminants: A Review. Industrial & Engineering Chemistry Research, 62(17), 6559–6583. https://doi.org/https://doi.org/10.1021/acs.iecr.3c00595
  • Hashemi, S. H., & Kaykhaii, M. (2022). Azo dyes: sources, occurrence, toxicity, sampling, analysis, and their removal methods. In Emerging freshwater pollutants (pp. 267–287). Elsevier. https://doi.org/https://doi.org/10.1016/b978-0-12-822850-0.00013-2
  • Janjhi, F. A., Ihsanullah, I., Bilal, M., Castro-Muñoz, R., Boczkaj, G., & Gallucci, F. (2023). MXene-based materials for removal of antibiotics and heavy metals from wastewater–A review. Water Resources and Industry, 100202. https://doi.org/https://doi.org/10.1016/j.wri.2023.100202
  • Kamsonlian, S., & Agarwal, V. (2023). Review on synthesis of plant-mediated green iron nanoparticles and their application for decolorization of dyes. Materials Today: Proceedings, 78, 99–107. https://doi.org/https://doi.org/10.1016/j.matpr.2022.11.308
  • Lekhak, U. M. (2023). Ecotoxicity of synthetic dyes. In Current Developments in Bioengineering and Biotechnology (pp. 45–67). Elsevier. https://doi.org/https://doi.org/10.1016/b978-0-323-91235-8.00021-8
  • Li, Y., Luo, H., Ji, W., Li, S., Nian, P., Xu, N., … Wei, Y. (2023). Visible-light-driven photocatalytic ZnO@ Ti3C2Tx MXene nanofiltration membranes for enhanced organic dyes removal. Separation and Purification Technology, 124420. https://doi.org/https://doi.org/10.1016/j.seppur.2023.124420
  • Ma, Q., Gao, J., Moussa, B., Young, J., Zhao, M., & Zhang, W. (2023). Electrosorption, Desorption, and Oxidation of Perfluoroalkyl Carboxylic Acids (PFCAs) via MXene-Based Electrocatalytic Membranes. ACS Applied Materials & Interfaces. https://doi.org/https://doi.org/10.1021/acsami.3c03991
  • Maheshwari, K., Agrawal, M., & Gupta, A. B. (2021). Dye pollution in water and wastewater. Novel Materials for Dye-Containing Wastewater Treatment, 1–25. https://doi.org/https://doi.org/10.1007/978-981-16-2892-4_1
  • Mustafa, S., Jamil, K., Zhang, L., & Girmay, M. B. (2022). Does Public Awareness Matter to Achieve the UN’s Sustainable Development Goal 6: Clean Water for Everyone? Journal of Environmental and Public Health, 2022. https://doi.org/https://doi.org/10.1155/2022/8445890
  • Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., … Barsoum, M. W. (2023). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. In MXenes (pp. 15–29). Jenny Stanford Publishing. https://doi.org/https://dx.doi.org/10.1201/9781003306511-4
  • Obayomi, K. S., Lau, S. Y., Danquah, M. K., Zhang, J., Chiong, T., Obayomi, O. V., … Rahman, M. M. (2024). A response surface methodology approach for the removal of methylene blue dye from wastewater using sustainable and cost-effective adsorbent. Process Safety and Environmental Protection. https://doi.org/https://doi.org/10.1016/j.psep.2024.01.106
  • Pouramini, Z., Mousavi, S. M., Babapoor, A., Hashemi, S. A., Pynadathu Rumjit, N., Garg, S., … Chiang, W.-H. (2023). Recent Advances in MXene-Based Nanocomposites for Wastewater Purification and Water Treatment: A Review. Water, 15(7), 1267. https://doi.org/https://doi.org/10.3390/w15071267
  • Qing, Q., Shi, X., Hu, S., Li, L., Huang, T., Zhang, N., & Wang, Y. (2023). Synchronously Enhanced Removal Ability and Stability of MXene through Biomimetic Modification. Langmuir, 39(27), 9453–9467. https://doi.org/10.1021/acs.langmuir.3c00987
  • Rana, G., Dhiman, P., Kumar, A., Sharma, G., Verma, Y., & Chauhan, A. (2023). Functionalization of two-dimensional MXene-based nanomaterials for water purifications and energy conversion applications: A review. Materials Science in Semiconductor Processing, 165, 107645. https://doi.org/https://doi.org/10.1016/j.mssp.2023.107645
  • Saad, I., Ralha, N., Abukhadra, M. R., Al Zoubi, W., & Ko, Y. G. (2023). Recent advances in photocatalytic oxidation techniques for decontamination of water. Journal of Water Process Engineering, 52, 103572. https://doi.org/https://doi.org/10.1016/j.jwpe.2023.103572
  • Sadat, H., Guettai, N., Berkani, M., Hoang, H. Y., Shanmuganathan, R., Pugazhendhi, A., & Kadmi, Y. (2023). Recent advances in photochemical-based nanomaterial processes for mitigation of emerging contaminants from aqueous solutions. Applied Nanoscience, 13(6), 3905–3924. https://doi.org/https://doi.org/10.1007/s13204-022-02627-y
  • Sharma, P., & Qanungo, K. (2022). Challenges in Effluents Treatment Containing Dyes. Adv Res Text Eng, 7(2), 1075. https://doi.org/https://doi.org/10.26420/advrestexteng.2022.1075
  • Solangi, N. H., Karri, R. R., Mubarak, N. M., Mazari, S. A., Jatoi, A. S., & Koduru, J. R. (2023). Emerging 2D MXene-based adsorbents for hazardous pollutants removal. Desalination, 549, 116314. https://doi.org/https://doi.org/10.1016/j.desal.2022.116314
  • Tawalbeh, M., Mohammed, S., Al-Othman, A., Yusuf, M., Mofijur, M., & Kamyab, H. (2023). MXenes and MXene-based materials for removal of pharmaceutical compounds from wastewater: Critical review. Environmental Research, 115919. https://doi.org/https://doi.org/10.1016/j.envres.2023.115919
  • Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the Total Environment, 717, 137222. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.137222
  • Verma, A. K., Karande, S., & Mathur, A. (2022). Role of biofilms to curb contamination in water bodies. In Relationship Between Microbes and the Environment for Sustainable Ecosystem Services, Volume 2 (pp. 77–93). Elsevier. https://doi.org/https://doi.org/10.1016/b978-0-323-89937-6.00006-1
  • Wang, R., Cao, H., Yao, C., Peng, C., Qiu, J., Dou, K., … Wang, W. (2023). Construction of alkalized MXene-supported CoFe2O4/CS composites with super-strong adsorption capacity to remove toxic dyes from aqueous solution. Applied Surface Science, 624, 157091. https://doi.org/https://doi.org/10.1016/j.apsusc.2023.157091
  • Wang, Y., Gao, X., Zhang, L., Wu, X., Wang, Q., Luo, C., & Wu, G. (2019). Synthesis of Ti3C2/Fe3O4/PANI hierarchical architecture composite as an efficient wide-band electromagnetic absorber. Applied Surface Science, 480, 830–838. https://doi.org/https://doi.org/10.1016/j.apsusc.2019.03.049
  • Wiśniewska, M., Chibowski, S., Wawrzkiewicz, M., Onyszko, M., & Bogatyrov, V. (2022). CI Basic Red 46 removal from sewage by carbon and silica based composite: equilibrium, kinetic and electrokinetic studies. Molecules, 27(3), 1043. https://doi.org/https://doi.org/10.3390/molecules27031043
  • Wong, S., Ghafar, N. A., Ngadi, N., Razmi, F. A., Inuwa, I. M., Mat, R., & Amin, N. A. S. (2020). Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Scientific Reports, 10(1), 2928. https://doi.org/https://doi.org/10.1038/s41598-020-60021-6
  • Yan, J., Liu, P. F., Wen, H. X., & Liu, H. J. (2022). Effective Removal of Basic Red 46 with Ti3C2 Powder Modified with Citric acid. ChemistrySelect, 7(29), e202201733. https://doi.org/https://doi.org/10.1002/slct.202201733
  • Zhang, G., Wang, T., Xu, Z., Liu, M., Shen, C., & Meng, Q. (2020). Synthesis of amino-functionalized Ti 3 C 2 T x MXene by alkalization-grafting modification for efficient lead adsorption. Chemical Communications, 56(76), 11283–11286. https://doi.org/https://doi.org/10.1039/d0cc04265j
  • Zhang, Y., Luo, J., Feng, B., Xu, H., Sun, Y., Gu, X., … Ren, H. (2023). Delamination of multilayer Ti3C2Tx MXene alters its adsorpiton and reduction of heavy metals in water. Environmental Pollution, 330, 121777. https://doi.org/https://doi.org/10.1016/j.envpol.2023.121777
There are 38 citations in total.

Details

Primary Language English
Subjects Environmental Pollution and Prevention
Journal Section Environmental Engineering
Authors

Yunus Aksoy 0000-0002-6047-2101

Publication Date December 3, 2024
Submission Date June 13, 2024
Acceptance Date July 8, 2024
Published in Issue Year 2024

Cite

APA Aksoy, Y. (2024). DIRECT HF ETCHING-DERIVED Ti3C2TX: A POTENT ADSORBENT FOR BASIC RED 46 DYE. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 1571-1581. https://doi.org/10.17780/ksujes.1500888