Research Article
BibTex RIS Cite

MISIR KOÇANINDA SÜLFÜRİK ASİT, HİDROJEN PEROKSİT VE ULTRASOUND ÖN İŞLEMLERİ İLE ÇÖZÜNMÜŞ ŞEKER ÜRETİMİNİN OPTİMİZASYONU

Year 2019, , 183 - 198, 30.12.2019
https://doi.org/10.17780/ksujes.645375

Abstract

Bu çalışmada, Niğde ve çevre illerden temin
edilen mısır koçanlarında, biyoyakıt potansiyelinin arttırılmasında
fizikokimyasal (H2O2,
H2O2+US, H2O2, H2O2+US) önişlemlerin
etkisi belirlenmiştir. Uygulanan önişlemlerin optimizasyonu için istatistiki
metot RSM (Response Surface Methods) Box-Behnken tasarımı kullanılmıştır.
Tasarımda beklenen yanıtlar Toplam Şeker (TŞ) ve İndirgen Şeker (İŞ)
konsantrasyonudur. Model sonuçlarına göre; H2SO4 önişlemi için 13,13 g/L
maksimum TŞ, % 3 asit konsantrasyonu, 100 °C ve 180 dakika koşullarında;. 7,7
g/L maksimum İŞ ise % 5 asit konsantrasyonu, 100 °C ve 180 dakikada elde
edilmiştir.  H2SO4-US önişlemi için 10,72
g/L g/L maksimum TŞ, % 3 asit konsantrasyonu, 100 kJ/kgDM US dozu ve 30 dakika
koşullarında; 3,16 g/L’ye maksimum İŞ ise % 4,24 asit konsantrasyonu, 100
kJ/kgDM US dozu ve 27,7 dakikada elde edilmiştir. H2O2 önişleminde 1,70 g/L maksimum TŞ %  0,15 H2O2,
0,38 mesh ve % 1,98 katı oranı koşullarında; 1,24 g/L’ye maksimum İŞ % 0,10 H2O2, 0,61 mesh ve % 2
katı oranı koşullarında elde edilmiştir. H2O2-US
önişlemi için 5,70 g/L maksimum TŞ % 1 H2O2,
60 kJ/kgDM US dozu ve 5 dakika koşullarında; 
1,11 g/L maksimum İŞ % 0,1 H2O2,
20 kJ/kgDM US dozu ve 17,5 dakika koşullarında elde edilmiştir. Çalışma sonucunda,
lignoselülozik yapı çözünebilir yapıya dönüştürülmüştür.

Supporting Institution

Niğde Ömer Halisdemir Üniversitesi

Project Number

FEB2015/42-BAGEP

Thanks

Bu çalışma, Niğde Ömer Halisdemir Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FEB2015/42-BAGEP kodlu projesi olarak desteklenmiştir.

References

  • Adıgüzel, A. O., “Lignoselülozik materyallerden biyoetanol üretimi için kullanılan ön-muamele ve hidroliz yöntemleri”. SAU J. Sci., 17(3): p. 381-397, 2013.Alvira, P.,Tomás-Pejó E., Ballesteros M., Negro M.J., “Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A Review”. Bioresource Technology, 101(13): p. 4851-4861, 2010.Badiesi, M., Asim N., Jahim J.M., Sopian K.,“Comparison of Chemical Pretreatment Methods for Cellulosic Biomass”. APCBEE Procedia, 9: p. 170-174, 2014.Balat, M., Balat, H., Öz, C., “Progress in bioethanol processing”, Progress in Energy and Combustion Science, 551-573, 2007.Behera, S., Arora, R., Nandhagopal N., Kumar S., “Importance of chemical pretreatment for bioconversion of lignocellulosic biomass”. Renewable & Sustainable Energy Reviews, 36: p. 91-106, 2014.Behera, S., Mohanty R.C., Ray R.C.. “Ethanol production from mahula (Madhuca latifolia L.) flowers with immobilized cells of Saccharomyces cerevisiae in Luffa cylindrica L. sponge discs”. Applied Energy, 88(1): p. 212-215, 2011.Bertheta M.A., Angellier-Coussya H., Machado D., Hilliou L., Staebler A., Vicente A., Gontard N., “Exploring the potentialities of using lignocellulosic fibres derived from three food by-products as constituents of biocomposites for food packaging”. Industrial Crops and Products, 69: p. 110-122, 2015.Borrion, A.L., McManus M.C., Hammond G.P.. “Environmental life cycle assessment of bioethanol production from wheat straw”. Biomass & Bioenergy, 47: p. 9-19, 2012.BP Statistical Review of World Energy What’s new in renewables. International Gas Engineering and Management, 42(9): p. 25-25, 2002.Chandra, R.P., Bura, R., Mabee, W. E., Berlin, A., Pan, X., Saddler, J. N. “Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics?” Biofuels, 108: p. 67-93, 2007.Chang, V.S., Holtzapple M.T.. “Fundamental factors affecting biomass enzymatic reactivity”. Applied Biochemistry and Biotechnology, 84-6: p. 5-37, 2000.Deniz E., Yeşilören, G., İşçi N. Ö., “Türkiye’de Gıda Endüstrisi Kaynaklı Biyokütle ve Biyoyakıt Potansiyeli”. Gıda, 40(1): p. 47-54, 2015.Drapcho M.C., Nghim N.P., Walker T. “Biofuels Engineering Process Technology”. McGraw-Hill, New York, 2008.FAO, 2014. Food and Agriculture Organization of the United Nations Web Page, AQUASTAT database. http://fao.org/nr/aquastat [Erişim: 15 Agustos 2019].Gizlenci, Ş., Acar M. Şahin, M. “Türkiye’de Yenilenebilir Enerji Kaynaklarının (Biyodize, biyoetanol, Biyokütle) Projeksiyonu”. Tarım Makinaları Bilimi Dergisi, 8(3): p. 337-344, 2012.Goldemberg, J., “Ethanol for a sustainable energy future”. Science, 315(5813): p. 808-810, 2007.Gouveia, L. and Oliveira. A.C., “Microalgae as a raw material for biofuels production”. Journal of Industrial Microbiology & Biotechnology, 36(2): p. 269-274, 2009.Guerrero, A.B., Ballesterosb, I. and M. Ballesteros. “Optimal conditions of acid-catalysed steam explosion pretreatment of banana lignocellulosic biomass for fermentable sugar production”. J. Chem Technol Biotechnol, 92: p. 2351-2359, 2017.Haque, M.A., Nath Barman D, Kang TH, Kim MK, Kim J, Kim H, Yun HD. “Effect of Dilute Alkali on Structural Features and Enzymatic Hydrolysis of Barley Straw (Hordeum vulgare) at Boiling Temperature with Low Residence Time”. Journal of Microbiology and Biotechnology, 22(12): p. 1681-1691, 2012.Harmsen, P.F.H, Huijgen, W, Bermudez, L, Bakker, R., “Litaratüre Review of Physical and Chemical Pretreatment Procces for Lignocellulosic Biomass”. Bıosynerg, 10(013), 2010.Isroi, R.M., Syamsiah S., Niklasson C., Cahyanto M.N., Ludquist K., Taherzadeh M.J., “Biological Pretreatment of Lignocelluloses with White-Rot Fungi and Its Applications: A Review”. Bioresources, 6(4): p. 5224-5259, 2011.Jovana R., Jelena D., Siniša D., Stevan P., “Bioethanol Production from Intermediate Products of Sugar Beet Processing with Different Types of Saccharomyces Cerevisae”. Chemical Industry & Chemical Engineering Quarterly, 15(1): p. 13-16, 2009.Karunanithy, C., Muthukumarappan K.., “Influence of extruder and feedstock variables on torque requirement during pretreatment of different types of biomass - A response surface analysis”. Biosystems Engineering, 109(1): p. 37-51, 2011a.Karunanithy, C., Muthukumarappan. K., “Optimization of alkali soaking and extrusion pretreatment of prairie cord grass for maximum sugar recovery by enzymatic hydrolysis”. Biochemical Engineering Journal, 54(2): p. 71-82, 2011b.Kim, J.S., Lee Y.Y., Kim T.H., “A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass”. Bioresource Technology, 199: p. 42-48, 2016.Kuhar, S., Nair L.M., Kuhad R.C., “Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol”. Canadian Journal of Microbiology, 54(4): p. 305-313, 2008.Mood S.H.,Golfeshan A.H., Tabatabaei M., Jouzani G.J., HassanNajafi G., Gholami M., Ardjmand M, “Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment”. Renewable & Sustainable Energy Reviews, 27: p. 77-93, 2013.Mosier, N., Wyman, C.,Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., Ladisch, M. et al., “Features of promising technologies for pretreatment of lignocellulosic biomass”. Bioresource Technology, 96(6): p. 673-686, 2005.Parisi, F. “Advances in lignocellulosic hydrolysis and in the utilization of the hydrolysates”, Advances in Biochemical Engineering 38 53–87, 1989.Radeva G., Valchev I., Petrın S., Valcheva E., Tsekova P. “Comparative Kinetic Analysis of Enzyme Hydrolysis of Steam-Exploded Wheat Straw”. Cellulose Chemistry and Technology, 46(1-2): p. 61-67, 2012.Sanchez, C., “Lignocellulosic residues: Biodegradation and bioconversion by fungi”. Biotechnology Advances, 27(2): p. 185-194, 2009.Saritha, M., A. Arora, Lata, “Biological Pretreatment of Lignocellulosic Substrates for Enhanced Delignification and Enzymatic Digestibility”. Indian Journal of Microbiology, 52(2): p. 122-130, 2012.Singh R., Shukla A., Tiwari S., Srivastava M., “A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential”. Renewable & Sustainable Energy Reviews, 32: p. 713-728, 2014.Singh, P., Suman, A., Tiwari, P., Arya, N., Gaur, A., Shrivastava, A. K., “Biological pretreatment of sugarcane trash for its conversion to fermentable sugars”. World Journal of Microbiology & Biotechnology, 24(5): p. 667-673, 2008.Sinha, P. Pandey A., “Improved hydrogen production by lab isolate: a novel organism for waste management and source of renewable energy”. New Biotechnology, 25: p. S273-S273, 2009.Sun, Y. Cheng. YJ. “Hydrolysis of lignocellulosic materials for ethanol production: a Review”. Bioresource Technology, 83(1): p. 1-11, 2002.Talebnia, F., Karakashev D., Angelidaki I.. “Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation”. Bioresource Technology, 101(13): p. 4744-4753, 2010.Toprak Mahsulleri Ofisi, “2018-Hububat Sektör Raporu”, 2018Türkiye İstatistik Kurumu (TUİK), “Bitkisel üretim istatistikleri raporu”, 2018Usal G., “Buğday Tarlası Atıklarından Alkali Hidroliz İle Fenolik Maddelerin Üretimi ve Üretim Koşullarının Optimizasyonu”, Yayınlanmamış Yüksek Lisans Tezi Gaziosmanpaşa Üniversitesi, Gıda Mühendisliği Anabilim Dalı, Tokat, 2014.Üçgül. İ., Akgül G., “Biomass Technology”. Journal of Yekarum, 1(1): p. 3-11, 2010.Wang, L., Littlewood J., Murphy R.J.“Environmental sustainability of bioethanol production from wheat straw in the UK”. Renewable & Sustainable Energy Reviews, 28: p. 715-725, 2013.Wong, A., Zhang, H., Kumar A. “Life cycle water footprint of hydrogenation-derived renewable diesel production from lignocellulosic biomass”. Water Research, 102: p. 330-345, 2016.

OPTIMIZATION OF SOLUBLE SUGAR PRODUCTION OF CORN COB BY SULFURIC ACID, HYDROGEN PEROXIDE AND ULTRASES DALGA PRETREATMENT

Year 2019, , 183 - 198, 30.12.2019
https://doi.org/10.17780/ksujes.645375

Abstract

In this study, the effect of physicochemical
(H2SO4, H2SO4 + US,
H2O2, H2O2+ US) pretreatments on increasing the biofuel
potential of corn cobs obtained from Niğde and surrounding provinces was
determined. The statistical method RSM (Response Surface Methods) Box-Behnken
design was used to determine the optimization of the applied pretreatments. The
responses used in the design are Total Sugar (TS) and Reducing Sugar (RS)
concentration. According to model results; 13.13 g/L maximum TS was achieved
3%acid concentration, 100 ° C and 180 min; maximum RS concentration of 7.7 g/L
was achieved at 5 %acid concentration, 100°C and 180 min for H2SO4
pretreatment. 10.72 g /L maximum TS was achieved 3%acid concentration, 100
kJ/kg DM US dose and 30 min conditions; maximum RC concentration 3,16 g/L was
obtained that an acid concentration of 4.24%, a US dose of 100 kJ/kg DM, and
27.7 minutes for
H2O2-US pretreatment. 1.70 g/L maximum TS was
reach that 0.15%
H2O2, 0.38 mesh and 1.98%solids conditions; 1.24
g/L maximum was achieved under conditions of 0.10%
H2O2, 0.61 mesh and 2%solids for H2O2pre-treatment. 5.70 g/L maximum TS was obtained under
condition 1%
H2O2, 60 kJ/kg DM US dose and 5 min, 1.11 g/L maximum RC
was obtained under 0.1%
H2O2, US dose of 20 kJ/kg DM and 17.5 minutes for H2O2-US pretreatment. As a result of this study, the lignocellulosic
structure was converted to soluble structure.

Project Number

FEB2015/42-BAGEP

References

  • Adıgüzel, A. O., “Lignoselülozik materyallerden biyoetanol üretimi için kullanılan ön-muamele ve hidroliz yöntemleri”. SAU J. Sci., 17(3): p. 381-397, 2013.Alvira, P.,Tomás-Pejó E., Ballesteros M., Negro M.J., “Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A Review”. Bioresource Technology, 101(13): p. 4851-4861, 2010.Badiesi, M., Asim N., Jahim J.M., Sopian K.,“Comparison of Chemical Pretreatment Methods for Cellulosic Biomass”. APCBEE Procedia, 9: p. 170-174, 2014.Balat, M., Balat, H., Öz, C., “Progress in bioethanol processing”, Progress in Energy and Combustion Science, 551-573, 2007.Behera, S., Arora, R., Nandhagopal N., Kumar S., “Importance of chemical pretreatment for bioconversion of lignocellulosic biomass”. Renewable & Sustainable Energy Reviews, 36: p. 91-106, 2014.Behera, S., Mohanty R.C., Ray R.C.. “Ethanol production from mahula (Madhuca latifolia L.) flowers with immobilized cells of Saccharomyces cerevisiae in Luffa cylindrica L. sponge discs”. Applied Energy, 88(1): p. 212-215, 2011.Bertheta M.A., Angellier-Coussya H., Machado D., Hilliou L., Staebler A., Vicente A., Gontard N., “Exploring the potentialities of using lignocellulosic fibres derived from three food by-products as constituents of biocomposites for food packaging”. Industrial Crops and Products, 69: p. 110-122, 2015.Borrion, A.L., McManus M.C., Hammond G.P.. “Environmental life cycle assessment of bioethanol production from wheat straw”. Biomass & Bioenergy, 47: p. 9-19, 2012.BP Statistical Review of World Energy What’s new in renewables. International Gas Engineering and Management, 42(9): p. 25-25, 2002.Chandra, R.P., Bura, R., Mabee, W. E., Berlin, A., Pan, X., Saddler, J. N. “Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics?” Biofuels, 108: p. 67-93, 2007.Chang, V.S., Holtzapple M.T.. “Fundamental factors affecting biomass enzymatic reactivity”. Applied Biochemistry and Biotechnology, 84-6: p. 5-37, 2000.Deniz E., Yeşilören, G., İşçi N. Ö., “Türkiye’de Gıda Endüstrisi Kaynaklı Biyokütle ve Biyoyakıt Potansiyeli”. Gıda, 40(1): p. 47-54, 2015.Drapcho M.C., Nghim N.P., Walker T. “Biofuels Engineering Process Technology”. McGraw-Hill, New York, 2008.FAO, 2014. Food and Agriculture Organization of the United Nations Web Page, AQUASTAT database. http://fao.org/nr/aquastat [Erişim: 15 Agustos 2019].Gizlenci, Ş., Acar M. Şahin, M. “Türkiye’de Yenilenebilir Enerji Kaynaklarının (Biyodize, biyoetanol, Biyokütle) Projeksiyonu”. Tarım Makinaları Bilimi Dergisi, 8(3): p. 337-344, 2012.Goldemberg, J., “Ethanol for a sustainable energy future”. Science, 315(5813): p. 808-810, 2007.Gouveia, L. and Oliveira. A.C., “Microalgae as a raw material for biofuels production”. Journal of Industrial Microbiology & Biotechnology, 36(2): p. 269-274, 2009.Guerrero, A.B., Ballesterosb, I. and M. Ballesteros. “Optimal conditions of acid-catalysed steam explosion pretreatment of banana lignocellulosic biomass for fermentable sugar production”. J. Chem Technol Biotechnol, 92: p. 2351-2359, 2017.Haque, M.A., Nath Barman D, Kang TH, Kim MK, Kim J, Kim H, Yun HD. “Effect of Dilute Alkali on Structural Features and Enzymatic Hydrolysis of Barley Straw (Hordeum vulgare) at Boiling Temperature with Low Residence Time”. Journal of Microbiology and Biotechnology, 22(12): p. 1681-1691, 2012.Harmsen, P.F.H, Huijgen, W, Bermudez, L, Bakker, R., “Litaratüre Review of Physical and Chemical Pretreatment Procces for Lignocellulosic Biomass”. Bıosynerg, 10(013), 2010.Isroi, R.M., Syamsiah S., Niklasson C., Cahyanto M.N., Ludquist K., Taherzadeh M.J., “Biological Pretreatment of Lignocelluloses with White-Rot Fungi and Its Applications: A Review”. Bioresources, 6(4): p. 5224-5259, 2011.Jovana R., Jelena D., Siniša D., Stevan P., “Bioethanol Production from Intermediate Products of Sugar Beet Processing with Different Types of Saccharomyces Cerevisae”. Chemical Industry & Chemical Engineering Quarterly, 15(1): p. 13-16, 2009.Karunanithy, C., Muthukumarappan K.., “Influence of extruder and feedstock variables on torque requirement during pretreatment of different types of biomass - A response surface analysis”. Biosystems Engineering, 109(1): p. 37-51, 2011a.Karunanithy, C., Muthukumarappan. K., “Optimization of alkali soaking and extrusion pretreatment of prairie cord grass for maximum sugar recovery by enzymatic hydrolysis”. Biochemical Engineering Journal, 54(2): p. 71-82, 2011b.Kim, J.S., Lee Y.Y., Kim T.H., “A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass”. Bioresource Technology, 199: p. 42-48, 2016.Kuhar, S., Nair L.M., Kuhad R.C., “Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol”. Canadian Journal of Microbiology, 54(4): p. 305-313, 2008.Mood S.H.,Golfeshan A.H., Tabatabaei M., Jouzani G.J., HassanNajafi G., Gholami M., Ardjmand M, “Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment”. Renewable & Sustainable Energy Reviews, 27: p. 77-93, 2013.Mosier, N., Wyman, C.,Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., Ladisch, M. et al., “Features of promising technologies for pretreatment of lignocellulosic biomass”. Bioresource Technology, 96(6): p. 673-686, 2005.Parisi, F. “Advances in lignocellulosic hydrolysis and in the utilization of the hydrolysates”, Advances in Biochemical Engineering 38 53–87, 1989.Radeva G., Valchev I., Petrın S., Valcheva E., Tsekova P. “Comparative Kinetic Analysis of Enzyme Hydrolysis of Steam-Exploded Wheat Straw”. Cellulose Chemistry and Technology, 46(1-2): p. 61-67, 2012.Sanchez, C., “Lignocellulosic residues: Biodegradation and bioconversion by fungi”. Biotechnology Advances, 27(2): p. 185-194, 2009.Saritha, M., A. Arora, Lata, “Biological Pretreatment of Lignocellulosic Substrates for Enhanced Delignification and Enzymatic Digestibility”. Indian Journal of Microbiology, 52(2): p. 122-130, 2012.Singh R., Shukla A., Tiwari S., Srivastava M., “A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential”. Renewable & Sustainable Energy Reviews, 32: p. 713-728, 2014.Singh, P., Suman, A., Tiwari, P., Arya, N., Gaur, A., Shrivastava, A. K., “Biological pretreatment of sugarcane trash for its conversion to fermentable sugars”. World Journal of Microbiology & Biotechnology, 24(5): p. 667-673, 2008.Sinha, P. Pandey A., “Improved hydrogen production by lab isolate: a novel organism for waste management and source of renewable energy”. New Biotechnology, 25: p. S273-S273, 2009.Sun, Y. Cheng. YJ. “Hydrolysis of lignocellulosic materials for ethanol production: a Review”. Bioresource Technology, 83(1): p. 1-11, 2002.Talebnia, F., Karakashev D., Angelidaki I.. “Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation”. Bioresource Technology, 101(13): p. 4744-4753, 2010.Toprak Mahsulleri Ofisi, “2018-Hububat Sektör Raporu”, 2018Türkiye İstatistik Kurumu (TUİK), “Bitkisel üretim istatistikleri raporu”, 2018Usal G., “Buğday Tarlası Atıklarından Alkali Hidroliz İle Fenolik Maddelerin Üretimi ve Üretim Koşullarının Optimizasyonu”, Yayınlanmamış Yüksek Lisans Tezi Gaziosmanpaşa Üniversitesi, Gıda Mühendisliği Anabilim Dalı, Tokat, 2014.Üçgül. İ., Akgül G., “Biomass Technology”. Journal of Yekarum, 1(1): p. 3-11, 2010.Wang, L., Littlewood J., Murphy R.J.“Environmental sustainability of bioethanol production from wheat straw in the UK”. Renewable & Sustainable Energy Reviews, 28: p. 715-725, 2013.Wong, A., Zhang, H., Kumar A. “Life cycle water footprint of hydrogenation-derived renewable diesel production from lignocellulosic biomass”. Water Research, 102: p. 330-345, 2016.
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Environmental Engineering
Authors

Ece Ümmü Deveci 0000-0002-7551-188X

Çağdaş Gönen 0000-0002-8554-8125

Gözde Çetin 0000-0003-4612-6170

Project Number FEB2015/42-BAGEP
Publication Date December 30, 2019
Submission Date November 11, 2019
Published in Issue Year 2019

Cite

APA Deveci, E. Ü., Gönen, Ç., & Çetin, G. (2019). MISIR KOÇANINDA SÜLFÜRİK ASİT, HİDROJEN PEROKSİT VE ULTRASOUND ÖN İŞLEMLERİ İLE ÇÖZÜNMÜŞ ŞEKER ÜRETİMİNİN OPTİMİZASYONU. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 22(4), 183-198. https://doi.org/10.17780/ksujes.645375