Research Article
BibTex RIS Cite

Piezoelektrik Malzemelerin Lityum İyon Batarya Anotlarında Katkı Olarak Kullanılması

Year 2021, , 258 - 270, 03.12.2021
https://doi.org/10.17780/ksujes.672828

Abstract

Özet
Lityum iyon bataryalarında son günlerdeki en popüler malzeme olarak gösterilen silisyum (Si) içerikli malzemelerle ilgili önemli sorunlar, bunların ticari olarak yaygınlaşmasını engellemektedir. Si anot malzemelerinin şarj/deşarj esnasında yüksek hacim değişikliğine uğraması ve mekanik olarak dayanıksızlığı bu sorunların başında gelmektedir. Bu çalışmada PZT tabanlı piezoelektrik malzemelerin kullanılmasıyla bu sorunların çözümündeki katkısı üzerinde durulmuştur. Si ve karbon (C) karışımı anot malzemelerinde katkı olarak PZT parçacıkları kullanıldığında bu malzemelerin kapasite performansında artış olduğu görülmüştür. Bu artışın nedenleri tartışılmakla birlikte farklı türlerde PZT malzemeleri ile farklı oranlarda Si-C karışımları üzerine test yapılmış ve aralarındaki performans farkları incelenmiştir. PZT kullanımı olmadığı durumlarda ilk 50 çevrimde 50 mAh/g’in altında spesifik kapasite değerleri vererek bozulmaya uğrayan anot malzemelerinin, PZT katkısı kullanılmasıyla 100. çevrimde dahi 400 mAh/g üzerinde değerleri verdiği gözlemlenmiştir.

Supporting Institution

TÜBİTAK

Project Number

118M340

Thanks

Yazar bu çalışmadaki desteklerinden ve yardımlarından dolayı Doç. Dr. Rezan Demir-Çakan’a ve Prof. Dr. Hüseyin Yılmaz’a teşekkürlerini sunar

References

  • Aurbach, D., Markovsky, B., Salitra, G., Markevich, E., Talyossef, Y., Koltypin, M., Kovacheva, D. (2007). Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries. Journal of Power Sources, 165(2), 491-499. doi:10.1016/j.jpowsour.2006.10.025
  • B.A. Boukamp, G. C. L., R.A. Huggins. (1981). All-Solid Lithium Electrodes With Mixed-Conductor Matrix. Journal of Electrochemical Society, 128(4), 4. Barnett, B., Ofer, D., Yang, Y., Oh, B., Rempel, J., McCoy, C., Sririramulu, S. (2010). "PHEV Battery Cost Assessment". Retrieved from Bourderau, S., Brousse, T., & Schleich, D. M. (1999). Amorphous silicon as a possible anode material for Li-ion batteries. Journal of Power Sources, 81, 233-236.
  • Cabana, J., Monconduit, L., Larcher, D., & Palacín, M. R. (2010). Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Advanced Materials, 22(35), E170-E192. doi:10.1002/adma.201000717
  • Cheng, F., Liang, J., Tao, Z., & Chen, J. (2011). Functional materials for rechargeable batteries. Adv Mater, 23(15), 1695-1715. doi:10.1002/adma.201003587
  • Choi, N.-S., Yew, K. H., Lee, K. Y., Sung, M., Kim, H., & Kim, S.-S. (2006). Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. Journal of Power Sources, 161(2), 1254-1259. doi:http://dx.doi.org/10.1016/j.jpowsour.2006.05.049
  • Comission. (2002). Recommendations on the Transport of Dangerous Goods. New York: United Nations.
  • Cui, L.-F., Ruffo, R., Chan, C. K., Peng, H., & Cui, Y. (2008). Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes. Nano Letters, 9(1), 491-495. doi:10.1021/nl8036323
  • Dunn, J. B., Gaines, L., Sullivan, J., & Wang, M. Q. (2012). Impact of Recycling on Cradle-to-Gate Energy Consumption and Greenhouse Gas Emissions of Automotive Lithium-Ion Batteries. Environmental Science & Technology, 46(22), 12704-12710. doi:10.1021/es302420z
  • Fan, Y., Zhang, Q., Lu, C. X., Xiao, Q. Z., Wang, X. H., & Tay, B. K. (2013). High performance carbon nanotube-Si core-shell wires with a rationally structured core for lithium ion battery anodes. Nanoscale, 5(4), 1503-1506. doi:Doi 10.1039/C3nr33683b
  • Fears, T. M., Doucet, M., Browning, J. F., Baldwin, J. K. S., Winiarz, J. G., Kaiser, H., . . . Veith, G. M. (2016). Evaluating the solid electrolyte interphase formed on silicon electrodes: a comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry. Physical Chemistry Chemical Physics, 18(20), 13927-13940. doi:10.1039/c6cp00978f
  • Gaines, L., & Nelson, P. (2011). Lithium-Ion Batteries: Examining Material Demand And Recycling Issues Argonne National Laboratory, Argonne, IL.
  • Gert Berckmans , M. M., Jelle Smekens, Noshin Omar, Lieselot Vanhaverbeke and Joeri Van Mierlo. (2017). Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030. Energies, 10(1314).
  • Goodenough, J. B., & Kim, Y. (2010). Challenges for Rechargeable Li Batteries. Chemistry of Materials, 22(3), 587-603. doi:Doi 10.1021/Cm901452z
  • Grande, L. (2017). "Li-ion Batteries 2018-2028". Retrieved from https://www.idtechex.com/research/reports/li-ion-batteries-2018-2028-000557.asp
  • Hatchard, T. D., & Dahn, J. R. (2004). In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. Journal of the Electrochemical Society, 151(6), A838-A842. doi:Doi 10.1149/1.1739217
  • Holzapfel, M., Buqa, H., Hardwick, L. J., Hahn, M., Wursig, A., Scheifele, W., . . . Petrat, F. M. (2006). Nano silicon for lithium-ion batteries. Electrochimica Acta, 52(3), 973-978. doi:DOI 10.1016/j.electacta.2006.06.034
  • Kasavajjula, U., Wang, C. S., & Appleby, A. J. (2007). Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. Journal of Power Sources, 163(2), 1003-1039. doi:DOI 10.1016/j.jpowsour.2006.09.084
  • Lee, H. Y., & Lee, S. M. (2004). Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries. Electrochemistry Communications, 6(5), 465-469. doi:DOI 10.1016/j.elecom.2004.03.005
  • Lee, J. H., Kim, W. J., Kim, J. Y., Lim, S. H., & Lee, S. M. (2008). Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries. Journal of Power Sources, 176(1), 353-358. doi:DOI 10.1016/j.jpowsour.2007.09.119
  • Li, X., Gu, M., Hu, S., Kennard, R., Yan, P., Chen, X., . . . Liu, J. (2014). Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nature Communications, 5, 4105. doi:10.1038/ncomms5105 http://www.nature.com/articles/ncomms5105#supplementary-information
  • Lu, C. X., Fan, Y., Li, H., Yang, Y., Tay, B. K., Teo, E., & Zhang, Q. (2013). Core-shell CNT-Ni-Si nanowires as a high performance anode material for lithium ion batteries. Carbon, 63, 54-60. doi:DOI 10.1016/j.carbon.2013.06.038
  • Obrovac, M. N., & Christensen, L. (2004). Structural changes in silicon anodes during lithium insertion/extraction. Electrochemical and Solid State Letters, 7(5), A93-A96. doi:Doi 10.1149/1.1652421
  • Patil, A., Patil, V., Shin, D. W., Choi, J. W., Paik, D. S., & Yoon, S. J. (2008). Issue and challenges facing rechargeable thin film lithium batteries. Materials Research Bulletin, 43(8-9), 1913-1942. doi:DOI 10.1016/j.materresbull.2007.08.031
  • Sharma, R. A., & Seefurth, R. N. (1976). Thermodynamic Properties of Lithium-Silicon System. Journal of the Electrochemical Society, 123(8), C239-C239.
  • Shu, J., Li, H., Yang, R., Shi, Y., & Huang, X. (2006). Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries. Electrochemistry Communications, 8(1), 51-54. doi:10.1016/j.elecom.2005.08.024
  • Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861), 359-367. doi:10.1038/35104644 35104644 [pii]
  • Wang, G. X., Ahn, J. H., Yao, J., Bewlay, S., & Liu, H. K. (2004). Nanostructured Si–C composite anodes for lithium-ion batteries. Electrochemistry Communications, 6(7), 689-692. doi:https://doi.org/10.1016/j.elecom.2004.05.010
  • Wu, H., Chan, G., Choi, J. W., Ryu, I., Yao, Y., McDowell, M. T., . . . Cui, Y. (2012). Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotechnology, 7(5), 309-314. doi:Doi 10.1038/Nnano.2012.35
  • Xu, Y. H., Yin, G. P., & Zuo, P. J. (2008). Geometric and electronic studies of Li15Si4 for silicon anode. Electrochimica Acta, 54(2), 341-345. doi:10.1016/j.electacta.2008.07.083
  • Yang, L. Y., Li, H. Z., Liu, J., Sun, Z. Q., Tang, S. S., & Lei, M. (2015). Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries. Scientific Reports, 5, 10908. doi:10.1038/srep10908
  • Yi, R., Dai, F., Gordin, M. L., Chen, S. R., & Wang, D. H. (2013). Micro-sized Si-C Composite with Interconnected Nanoscale Building Blocks as High-Performance Anodes for Practical Application in Lithium-Ion Batteries. Advanced Energy Materials, 3(3), 295-300. doi:DOI 10.1002/aenm.201200857
  • Yu, C., Li, X., Ma, T., Rong, J., Zhang, R., Shaffer, J., . . . Jiang, H. (2012). Silicon Thin Films as Anodes for High‐Performance Lithium‐Ion Batteries with Effective Stress Relaxation. Advanced Energy Materials.
  • Zhang, S., He, M., Su, C.-C., & Zhang, Z. (2016). Advanced electrolyte/additive for lithium-ion batteries with silicon anode. Current Opinion in Chemical Engineering, 13, 24-35. doi:http://dx.doi.org/10.1016/j.coche.2016.08.003
Year 2021, , 258 - 270, 03.12.2021
https://doi.org/10.17780/ksujes.672828

Abstract

Project Number

118M340

References

  • Aurbach, D., Markovsky, B., Salitra, G., Markevich, E., Talyossef, Y., Koltypin, M., Kovacheva, D. (2007). Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries. Journal of Power Sources, 165(2), 491-499. doi:10.1016/j.jpowsour.2006.10.025
  • B.A. Boukamp, G. C. L., R.A. Huggins. (1981). All-Solid Lithium Electrodes With Mixed-Conductor Matrix. Journal of Electrochemical Society, 128(4), 4. Barnett, B., Ofer, D., Yang, Y., Oh, B., Rempel, J., McCoy, C., Sririramulu, S. (2010). "PHEV Battery Cost Assessment". Retrieved from Bourderau, S., Brousse, T., & Schleich, D. M. (1999). Amorphous silicon as a possible anode material for Li-ion batteries. Journal of Power Sources, 81, 233-236.
  • Cabana, J., Monconduit, L., Larcher, D., & Palacín, M. R. (2010). Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Advanced Materials, 22(35), E170-E192. doi:10.1002/adma.201000717
  • Cheng, F., Liang, J., Tao, Z., & Chen, J. (2011). Functional materials for rechargeable batteries. Adv Mater, 23(15), 1695-1715. doi:10.1002/adma.201003587
  • Choi, N.-S., Yew, K. H., Lee, K. Y., Sung, M., Kim, H., & Kim, S.-S. (2006). Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. Journal of Power Sources, 161(2), 1254-1259. doi:http://dx.doi.org/10.1016/j.jpowsour.2006.05.049
  • Comission. (2002). Recommendations on the Transport of Dangerous Goods. New York: United Nations.
  • Cui, L.-F., Ruffo, R., Chan, C. K., Peng, H., & Cui, Y. (2008). Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes. Nano Letters, 9(1), 491-495. doi:10.1021/nl8036323
  • Dunn, J. B., Gaines, L., Sullivan, J., & Wang, M. Q. (2012). Impact of Recycling on Cradle-to-Gate Energy Consumption and Greenhouse Gas Emissions of Automotive Lithium-Ion Batteries. Environmental Science & Technology, 46(22), 12704-12710. doi:10.1021/es302420z
  • Fan, Y., Zhang, Q., Lu, C. X., Xiao, Q. Z., Wang, X. H., & Tay, B. K. (2013). High performance carbon nanotube-Si core-shell wires with a rationally structured core for lithium ion battery anodes. Nanoscale, 5(4), 1503-1506. doi:Doi 10.1039/C3nr33683b
  • Fears, T. M., Doucet, M., Browning, J. F., Baldwin, J. K. S., Winiarz, J. G., Kaiser, H., . . . Veith, G. M. (2016). Evaluating the solid electrolyte interphase formed on silicon electrodes: a comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry. Physical Chemistry Chemical Physics, 18(20), 13927-13940. doi:10.1039/c6cp00978f
  • Gaines, L., & Nelson, P. (2011). Lithium-Ion Batteries: Examining Material Demand And Recycling Issues Argonne National Laboratory, Argonne, IL.
  • Gert Berckmans , M. M., Jelle Smekens, Noshin Omar, Lieselot Vanhaverbeke and Joeri Van Mierlo. (2017). Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030. Energies, 10(1314).
  • Goodenough, J. B., & Kim, Y. (2010). Challenges for Rechargeable Li Batteries. Chemistry of Materials, 22(3), 587-603. doi:Doi 10.1021/Cm901452z
  • Grande, L. (2017). "Li-ion Batteries 2018-2028". Retrieved from https://www.idtechex.com/research/reports/li-ion-batteries-2018-2028-000557.asp
  • Hatchard, T. D., & Dahn, J. R. (2004). In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. Journal of the Electrochemical Society, 151(6), A838-A842. doi:Doi 10.1149/1.1739217
  • Holzapfel, M., Buqa, H., Hardwick, L. J., Hahn, M., Wursig, A., Scheifele, W., . . . Petrat, F. M. (2006). Nano silicon for lithium-ion batteries. Electrochimica Acta, 52(3), 973-978. doi:DOI 10.1016/j.electacta.2006.06.034
  • Kasavajjula, U., Wang, C. S., & Appleby, A. J. (2007). Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. Journal of Power Sources, 163(2), 1003-1039. doi:DOI 10.1016/j.jpowsour.2006.09.084
  • Lee, H. Y., & Lee, S. M. (2004). Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries. Electrochemistry Communications, 6(5), 465-469. doi:DOI 10.1016/j.elecom.2004.03.005
  • Lee, J. H., Kim, W. J., Kim, J. Y., Lim, S. H., & Lee, S. M. (2008). Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries. Journal of Power Sources, 176(1), 353-358. doi:DOI 10.1016/j.jpowsour.2007.09.119
  • Li, X., Gu, M., Hu, S., Kennard, R., Yan, P., Chen, X., . . . Liu, J. (2014). Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nature Communications, 5, 4105. doi:10.1038/ncomms5105 http://www.nature.com/articles/ncomms5105#supplementary-information
  • Lu, C. X., Fan, Y., Li, H., Yang, Y., Tay, B. K., Teo, E., & Zhang, Q. (2013). Core-shell CNT-Ni-Si nanowires as a high performance anode material for lithium ion batteries. Carbon, 63, 54-60. doi:DOI 10.1016/j.carbon.2013.06.038
  • Obrovac, M. N., & Christensen, L. (2004). Structural changes in silicon anodes during lithium insertion/extraction. Electrochemical and Solid State Letters, 7(5), A93-A96. doi:Doi 10.1149/1.1652421
  • Patil, A., Patil, V., Shin, D. W., Choi, J. W., Paik, D. S., & Yoon, S. J. (2008). Issue and challenges facing rechargeable thin film lithium batteries. Materials Research Bulletin, 43(8-9), 1913-1942. doi:DOI 10.1016/j.materresbull.2007.08.031
  • Sharma, R. A., & Seefurth, R. N. (1976). Thermodynamic Properties of Lithium-Silicon System. Journal of the Electrochemical Society, 123(8), C239-C239.
  • Shu, J., Li, H., Yang, R., Shi, Y., & Huang, X. (2006). Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries. Electrochemistry Communications, 8(1), 51-54. doi:10.1016/j.elecom.2005.08.024
  • Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861), 359-367. doi:10.1038/35104644 35104644 [pii]
  • Wang, G. X., Ahn, J. H., Yao, J., Bewlay, S., & Liu, H. K. (2004). Nanostructured Si–C composite anodes for lithium-ion batteries. Electrochemistry Communications, 6(7), 689-692. doi:https://doi.org/10.1016/j.elecom.2004.05.010
  • Wu, H., Chan, G., Choi, J. W., Ryu, I., Yao, Y., McDowell, M. T., . . . Cui, Y. (2012). Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotechnology, 7(5), 309-314. doi:Doi 10.1038/Nnano.2012.35
  • Xu, Y. H., Yin, G. P., & Zuo, P. J. (2008). Geometric and electronic studies of Li15Si4 for silicon anode. Electrochimica Acta, 54(2), 341-345. doi:10.1016/j.electacta.2008.07.083
  • Yang, L. Y., Li, H. Z., Liu, J., Sun, Z. Q., Tang, S. S., & Lei, M. (2015). Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries. Scientific Reports, 5, 10908. doi:10.1038/srep10908
  • Yi, R., Dai, F., Gordin, M. L., Chen, S. R., & Wang, D. H. (2013). Micro-sized Si-C Composite with Interconnected Nanoscale Building Blocks as High-Performance Anodes for Practical Application in Lithium-Ion Batteries. Advanced Energy Materials, 3(3), 295-300. doi:DOI 10.1002/aenm.201200857
  • Yu, C., Li, X., Ma, T., Rong, J., Zhang, R., Shaffer, J., . . . Jiang, H. (2012). Silicon Thin Films as Anodes for High‐Performance Lithium‐Ion Batteries with Effective Stress Relaxation. Advanced Energy Materials.
  • Zhang, S., He, M., Su, C.-C., & Zhang, Z. (2016). Advanced electrolyte/additive for lithium-ion batteries with silicon anode. Current Opinion in Chemical Engineering, 13, 24-35. doi:http://dx.doi.org/10.1016/j.coche.2016.08.003
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Electrical and Electronics Engineering
Authors

M. Taha Demirkan 0000-0002-5041-5680

Mehbare Doğrusöz 0000-0002-3064-8081

Project Number 118M340
Publication Date December 3, 2021
Submission Date January 9, 2020
Published in Issue Year 2021

Cite

APA Demirkan, M. T., & Doğrusöz, M. (2021). Piezoelektrik Malzemelerin Lityum İyon Batarya Anotlarında Katkı Olarak Kullanılması. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 24(4), 258-270. https://doi.org/10.17780/ksujes.672828