Investigating Effect of Bearing Length on Tensile Strength of 1045 Steel in Wire Drawing Operation
Year 2020,
, 227 - 235, 03.12.2020
Ekrem Çelik
,
Fatih Özen
,
Erdinç İlhan
,
Salim Aslanlar
Abstract
In this work, effect of bearing length on tensile strength was investigated. The influence of the bearing length is illustrated using two different reduction ratios and wire diameters. According to the results, the increase in strength was observed as the length of the bearing zone increased. However, the long bearing length caused various manufacturing problems during production. Microhardness distributions in wire cross section, on the other hand, increased as the length of bearing increased. The main reason for the increase of microhardness is the deformation hardening caused by the high friction force obtained by increasing the bearing length.
References
- Gillström, P., & Jarl, M. (2007). Wear of die after drawing of pickled or reverse bent wire rod. Wear, 262(7–8), 858–867. https://doi.org/10.1016/j.wear.2006.08.016
- Korchunov, A., Gun, G., & Polyakova, M. (2014). Recovery effect in drawing of steel bar for sizing. Procedia Engineering, 81, 676–681. https://doi.org/10.1016/j.proeng.2014.10.059
- Nilsson, M., & Olsson, M. (2011). Tribological testing of some potential PVD and CVD coatings for steel wire drawing dies. Wear, 273(1), 55–59. https://doi.org/10.1016/j.wear.2011.06.020
- Sas-Boca, I. M., Tintelecan, M., Pop, M., Iluţiu-Varvara, D. A., & Mihu, A. M. (2017). The Wire Drawing Process Simulation and the Optimization of Geometry Dies. Procedia Engineering, 181, 187–192. https://doi.org/10.1016/j.proeng.2017.02.368
- Schade, P. (2006). Wire drawing failures and tungsten fracture phenomena. International Journal of Refractory Metals and Hard Materials, 24(4), 332–337. https://doi.org/10.1016/j.ijrmhm.2005.09.003
- Wei, D., Min, X., Hu, X., Xie, Z., & Fang, F. (2020). Microstructure and mechanical properties of cold drawn pearlitic steel wires: Effects of drawing-induced heating. Materials Science and Engineering A, 784, 139341. https://doi.org/10.1016/j.msea.2020.139341
- Xu, P., Liang, Y., Li, J., & Meng, C. (2019). Further improvement in ductility induced by the refined hierarchical structures of pearlite. Materials Science and Engineering A, 745, 176–184. https://doi.org/10.1016/j.msea.2018.12.069
Tel Çekme İşleminde Kalıp Kalibrasyon Bölgesi Uzunluğunun 1045 Çelik Tel Mukavemeti Üzerine Olan Etkisinin İncelenmesi
Year 2020,
, 227 - 235, 03.12.2020
Ekrem Çelik
,
Fatih Özen
,
Erdinç İlhan
,
Salim Aslanlar
Abstract
Bu çalışmada, tel çekme işleminde kalibrasyon uzunluğunun çekme mukavemeti üzerine olan etkisi incelenmiştir. Kalibrasyon bölgesinin etkisini iki farklı redüksiyon oranı ve filmaşin çapı kullanılarak gösterilmiştir. Elde edilen sonuçlara göre, kalibrasyon bölge uzunluğu arttıkça mukavemet artışı gözlemlenmiştir. Ancak, kalibrasyon boyunun uzun olması üretim esnasında çeşitli imalat problemlerine sebebiyet vermiştir. Çapsal mikrosertlik dağılımları ise kalibrasyon boyu arttıkça aralarındaki farklarda da artış gözlemlenmiştir. Mikrosertliğin artmasının esas sebebinin kalibrasyon boyunun artmasıyla elde edilen yüksek sürtünme kuvvetinin oluşturduğu deformasyon sertleşmesidir.
References
- Gillström, P., & Jarl, M. (2007). Wear of die after drawing of pickled or reverse bent wire rod. Wear, 262(7–8), 858–867. https://doi.org/10.1016/j.wear.2006.08.016
- Korchunov, A., Gun, G., & Polyakova, M. (2014). Recovery effect in drawing of steel bar for sizing. Procedia Engineering, 81, 676–681. https://doi.org/10.1016/j.proeng.2014.10.059
- Nilsson, M., & Olsson, M. (2011). Tribological testing of some potential PVD and CVD coatings for steel wire drawing dies. Wear, 273(1), 55–59. https://doi.org/10.1016/j.wear.2011.06.020
- Sas-Boca, I. M., Tintelecan, M., Pop, M., Iluţiu-Varvara, D. A., & Mihu, A. M. (2017). The Wire Drawing Process Simulation and the Optimization of Geometry Dies. Procedia Engineering, 181, 187–192. https://doi.org/10.1016/j.proeng.2017.02.368
- Schade, P. (2006). Wire drawing failures and tungsten fracture phenomena. International Journal of Refractory Metals and Hard Materials, 24(4), 332–337. https://doi.org/10.1016/j.ijrmhm.2005.09.003
- Wei, D., Min, X., Hu, X., Xie, Z., & Fang, F. (2020). Microstructure and mechanical properties of cold drawn pearlitic steel wires: Effects of drawing-induced heating. Materials Science and Engineering A, 784, 139341. https://doi.org/10.1016/j.msea.2020.139341
- Xu, P., Liang, Y., Li, J., & Meng, C. (2019). Further improvement in ductility induced by the refined hierarchical structures of pearlite. Materials Science and Engineering A, 745, 176–184. https://doi.org/10.1016/j.msea.2018.12.069