Research Article
BibTex RIS Cite

NARENCİYE ATIKSULARININ ARITILABİLİRLİĞİNDE KOAGÜLASYON-FLOKÜLASYON METODUNUN UYGULANABİLİRLİĞİ

Year 2021, , 126 - 137, 03.09.2021
https://doi.org/10.17780/ksujes.828568

Abstract

Bu araştırma makalesinde, Akdeniz bölgesinde faaliyet gösteren bir narenciye işleme tesisi atıksularının koagülasyon-flokülasyon metodu ile arıtılabilirliği incelenmiştir. Arıtılabilirlik çalışması üç aşamada sürdürülmüş olup ilk aşamasında alum, demir-III-klorür ve magnezyum klorür koagülantları kullanılmıştır. Araştırmanın ikinci aşamasında, uygulanan alum dozunun arttırılması ile atıksuda gerçekleşecek olan KOİ ve AKM gideriminin etkisi incelenmiştir. Son aşamada ise sadece kireç kullanılması durumunda ham atıksuda gerçekleşecek olan KOİ ve AKM giderimleri araştırılmıştır.

Bu çalışmada kullanılmış olan üç koagülant arasında, narenciye atıksularının arıtılmasında alum koagülantının kullanılmasının daha uygun olacağı tespit edilmiş olup pH ayarlamada kireç kullanılması neticesinde arıtma veriminin arttığı görüşmüştür. Üç aşamadan oluşan arıtılabilirlik çalışması sonucunda, narenciye atıksularının arıtılmasında koagülasyon-flokülasyon prosesinin bir ön arıtma alternatifi olarak kullanılabileceği anlaşılmıştır. Bu çalışmada tespit edilen en yüksek KOİ giderim verimi 1.000 mg/L alum dozu için %60,25 ve en yüksek AKM giderim verimi ise pH 11 değerinde %87,22 olarak ölçülmüştür.

Supporting Institution

Çukurova Üniversitesi

References

  • APHA, AWWA ve WEF (2012). Standart methods for the examination of water and wastewater. American Public Health Association, New York.
  • Andiloro, S., Bombino, G., Tamburino, V., Zema, D.A. ve Zimbone, S.M. (2013). Aerated lagooning of agro-industrial wastewater: Depuration performance and energy requirements. Journal of Agricultural Engineering, 44, 827–832.
  • Aygün İ., Çakmak B. ve Alayunt F.N. (2018). Narenciye hasadının ergonomik açıdan incelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 6, 312-318.
  • Bouchareb, R., Derbal, K., Özay, Y., Bilici, Z., & Dizge, N. (2020). Combined natural/chemical coagulation and membrane filtration for wood processing wastewater treatment. Journal of Water Process Engineering, 37, 101521.
  • Carawan, R. E., ve Chambers, J. V. (1979). Spinoff on fruit and vegetable water and wastewater management. Extension Special Report No. AM-18E, North Carolina State University, Cornell University and Purdue University.
  • Çalışkan, M., Değirmenci, M., ve Çiner, F. (2002). Kot boyama tekstil atıksuyunda kalıcı KOİ'nin belirlenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Bilimleri Dergisi, 4 (1), 1-9.
  • Citrus. Citrus: Great Fruits for Heart Health (2016). https://foodinsight.org/citrus-great-fruits-for-heart-health/ Accessed: 12.10.2020.
  • Crittenden, J. C., Trussell, R. R., Hand, D. W., Howe, K. J., & Tchobanoglous, G. (2005). MWH's water treatment: principles and design. John Wiley & Sons. Hoboken, New Jersey, Amerika Birleşik Devletleri.
  • Corsino S.F., Trapani D.D., Torregrossa M. ve Viviani G. (2018). Aerobic granular sludge treating high strength citrus wastewater: Analysis of pH and organic loading rate effect on kinetics, performance and stability. Journal of Environmental Management, 214, 23-35.
  • Daud Z., Awang H., Latif A.A.A., Nasir N., Ridzuan M.B. ve Ahmad Z. (2015). Suspensed solid, color and oil and grease removal from biodiesel wastewater by coagulation and flocculation processes. Procedia-Social and Behavioral Sciences, 195, 2407-2411.
  • Di Bella, G., Giustra, M. G., & Freni, G. (2014). Optimisation of coagulation/flocculation for pre-treatment of high strength and saline wastewater: Performance analysis with different coagulant doses. Chemical Engineering Journal, 254, 283-292. Eryildiz B., Lukitawesa ve Taherzadeh M.J. (2020). Effect of pH, substrate loading, oxygen, and methanogens inhibitors on volatile volatile fatty acid (VFA) production from citrus waste by anaerobic digestion. Bioresource Technology, 302, 122800.
  • Guerreiro, L. F., Rodrigues, C. S., Duda, R. M., de Oliveira, R. A., Boaventura, R. A., & Madeira, L. M. (2016). Treatment of sugarcane vinasse by combination of coagulation/flocculation and Fenton’s oxidation. Journal of Environmental Management, 181, 237-248.
  • Guzmán J. (2012). Sustainability of the Process of Obtaining Citrus Essential Oil (Sostenibilidad del proceso de obtención de aceite esencial cítrico). Academic Publishing GmbH & Co. KG, Alemania, ISBN 978-3-8484-5530-0.
  • Guzmán J., Mosteo R., Sarasa J., Alba J.A. ve Ovellerio J.L. (2016). Evaluation of solar photo-Fenton and ozone based processes as citrus wastewater pre-treatments. Separation and Purification Technology, 164, 155-162.
  • Khan, M., Kalsoom, U., Mahmood, T., Riaz, M. ve Khan, A.R. (2003). Characterization and treatment of industrial effluent from sugar industry. Journal Chemical Society, 25 (3), 242-247.
  • Kimball, D. A. (1999). Citrus processing: A complete guide 2nd Edition. An Aspen Publication, Gaithersburg, Maryland. Koppar A. ve Pullammanappallil P., (2013). Anaerobic digestion of peel waste and wastewater for on site energy generation in a citrus processing facility. Energy, 60, 62-68.
  • Konieczny, P., Ekner, E., Uchman, W. ve Kufel, B. (2005). Effective use of ferric sulfate in treatment of different food industry wastewater. Acta Scientiarum Polonorum Technologia Alimentaria, 4 (1), 123-132.
  • Metcalf ve Eddy, Inc. (2003). Wastewater Engineering: Treatment and Reuse, 4th Edition. McGraw-Hill, New York. Orhon, D. ve Çokgör, E.U. (1997). COD Fractionation in wastewater characterization-the state of the art. Journal of Chemical Technology and Biotechnology, 68, 283-293.
  • Rizzo, L., Lofrano, G., Grassi, M., ve Belgiorno, V. (2008). Pre-treatment of olive mill wastewater by chitosan coagulation and advanced oxidation processes. Separation and Purification Technology, 63 (3), 648-653.
  • Rosas-Mendoza, E.S., Méndez-Contreras, J.M., Martínez-Sibaja, A., Vallejo-Cantú, N.A. ve Alvarado-Lassman, A. (2018). Anaerobic digestion of citrus industry effluents using an anaerobic hybrid teactor. Clean Technologies and Environmental Policy, 20, 1387-1397.
  • Rosas-Mendoza E.S., Contreras J.M., Aguilar-Lasserre A.A., Vallejo-Cantú N.A., Alvarado-Lassman A., (2020). Evaluation of bioenergy potential from citrus effluents through anaerobic digestion. Journal of Cleaner Production, 254, 120128. Sahu O.P. ve Chaudhari P.K. (2013). Review on chemical treatment of industrial waste water. Journal of Applied Sciences and Environmental Management, 17 (2) 241-257.
  • Saraçoğlu T. (2017). Bazı narenciye türlerinin seçilmiş fiziksel ve hidrodinamik özellikleri. Anadolu Tarım Bilimleri Dergisi, 32, 206-215.
  • Sharma K., Mahato N., Cho M.H., ve Lee Y.R. (2017). Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition, 31, 29-46.
  • Su Kirliliği Kontrolü Yönetmeliği (2004). Resmî Gazete Tarihi: 31.12.2004, Resmî Gazete Sayısı: 25687.
  • Speece, R.E. (1996). Anaerobic biotechnology for industrial wastewaters. Archae Press, Nashville, Tennesse. Teh, C. Y., Budiman, P. M., Shak, K. P. Y., ve Wu, T. Y. (2016). Recent advancement of coagulation–flocculation and its application in wastewater treatment. Industrial & Engineering Chemistry Research, 55 (16), 4363-4389.
  • Osorio, F., Torres, J.C. ve Hontoria, E. (2006). Study of Biological Aerated Filters for the Treatment of Effuents from the Citrus Industry. Journal of Environmental Science and Health Part A: Toxic/Hazardous Substances and Environmental Engineering, 41, 2683–2697.
  • Van Haandel A.C. ve Lettinga G. (1994). Anaerobic Sewage Treatment. John Wiley ve Sons Ltd, England. Yılmaz T., Yılmaz. K. (2019). Tekstil atıksuyu ve sentetik boyarmadde çözeltilerinden renk ve koi gideriminde alum ve magnezyum klorürün karşılaştırılması. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 22 (4) , 271-280.
  • Zaimoğlu Z. ve Bozkurt S. (2010). Yapay sulak alanlarda atıksu arıtımı. Nobel Yayınevi, Adana.
  • Zema D.A., Calabro P.S., Folino A., Tamburino V., Zappia G. ve Zimbone S.M. (2019). Wastewater management in citrus processing industries: an overview advantages and limits. Water, 11, 2481.
Year 2021, , 126 - 137, 03.09.2021
https://doi.org/10.17780/ksujes.828568

Abstract

References

  • APHA, AWWA ve WEF (2012). Standart methods for the examination of water and wastewater. American Public Health Association, New York.
  • Andiloro, S., Bombino, G., Tamburino, V., Zema, D.A. ve Zimbone, S.M. (2013). Aerated lagooning of agro-industrial wastewater: Depuration performance and energy requirements. Journal of Agricultural Engineering, 44, 827–832.
  • Aygün İ., Çakmak B. ve Alayunt F.N. (2018). Narenciye hasadının ergonomik açıdan incelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 6, 312-318.
  • Bouchareb, R., Derbal, K., Özay, Y., Bilici, Z., & Dizge, N. (2020). Combined natural/chemical coagulation and membrane filtration for wood processing wastewater treatment. Journal of Water Process Engineering, 37, 101521.
  • Carawan, R. E., ve Chambers, J. V. (1979). Spinoff on fruit and vegetable water and wastewater management. Extension Special Report No. AM-18E, North Carolina State University, Cornell University and Purdue University.
  • Çalışkan, M., Değirmenci, M., ve Çiner, F. (2002). Kot boyama tekstil atıksuyunda kalıcı KOİ'nin belirlenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Bilimleri Dergisi, 4 (1), 1-9.
  • Citrus. Citrus: Great Fruits for Heart Health (2016). https://foodinsight.org/citrus-great-fruits-for-heart-health/ Accessed: 12.10.2020.
  • Crittenden, J. C., Trussell, R. R., Hand, D. W., Howe, K. J., & Tchobanoglous, G. (2005). MWH's water treatment: principles and design. John Wiley & Sons. Hoboken, New Jersey, Amerika Birleşik Devletleri.
  • Corsino S.F., Trapani D.D., Torregrossa M. ve Viviani G. (2018). Aerobic granular sludge treating high strength citrus wastewater: Analysis of pH and organic loading rate effect on kinetics, performance and stability. Journal of Environmental Management, 214, 23-35.
  • Daud Z., Awang H., Latif A.A.A., Nasir N., Ridzuan M.B. ve Ahmad Z. (2015). Suspensed solid, color and oil and grease removal from biodiesel wastewater by coagulation and flocculation processes. Procedia-Social and Behavioral Sciences, 195, 2407-2411.
  • Di Bella, G., Giustra, M. G., & Freni, G. (2014). Optimisation of coagulation/flocculation for pre-treatment of high strength and saline wastewater: Performance analysis with different coagulant doses. Chemical Engineering Journal, 254, 283-292. Eryildiz B., Lukitawesa ve Taherzadeh M.J. (2020). Effect of pH, substrate loading, oxygen, and methanogens inhibitors on volatile volatile fatty acid (VFA) production from citrus waste by anaerobic digestion. Bioresource Technology, 302, 122800.
  • Guerreiro, L. F., Rodrigues, C. S., Duda, R. M., de Oliveira, R. A., Boaventura, R. A., & Madeira, L. M. (2016). Treatment of sugarcane vinasse by combination of coagulation/flocculation and Fenton’s oxidation. Journal of Environmental Management, 181, 237-248.
  • Guzmán J. (2012). Sustainability of the Process of Obtaining Citrus Essential Oil (Sostenibilidad del proceso de obtención de aceite esencial cítrico). Academic Publishing GmbH & Co. KG, Alemania, ISBN 978-3-8484-5530-0.
  • Guzmán J., Mosteo R., Sarasa J., Alba J.A. ve Ovellerio J.L. (2016). Evaluation of solar photo-Fenton and ozone based processes as citrus wastewater pre-treatments. Separation and Purification Technology, 164, 155-162.
  • Khan, M., Kalsoom, U., Mahmood, T., Riaz, M. ve Khan, A.R. (2003). Characterization and treatment of industrial effluent from sugar industry. Journal Chemical Society, 25 (3), 242-247.
  • Kimball, D. A. (1999). Citrus processing: A complete guide 2nd Edition. An Aspen Publication, Gaithersburg, Maryland. Koppar A. ve Pullammanappallil P., (2013). Anaerobic digestion of peel waste and wastewater for on site energy generation in a citrus processing facility. Energy, 60, 62-68.
  • Konieczny, P., Ekner, E., Uchman, W. ve Kufel, B. (2005). Effective use of ferric sulfate in treatment of different food industry wastewater. Acta Scientiarum Polonorum Technologia Alimentaria, 4 (1), 123-132.
  • Metcalf ve Eddy, Inc. (2003). Wastewater Engineering: Treatment and Reuse, 4th Edition. McGraw-Hill, New York. Orhon, D. ve Çokgör, E.U. (1997). COD Fractionation in wastewater characterization-the state of the art. Journal of Chemical Technology and Biotechnology, 68, 283-293.
  • Rizzo, L., Lofrano, G., Grassi, M., ve Belgiorno, V. (2008). Pre-treatment of olive mill wastewater by chitosan coagulation and advanced oxidation processes. Separation and Purification Technology, 63 (3), 648-653.
  • Rosas-Mendoza, E.S., Méndez-Contreras, J.M., Martínez-Sibaja, A., Vallejo-Cantú, N.A. ve Alvarado-Lassman, A. (2018). Anaerobic digestion of citrus industry effluents using an anaerobic hybrid teactor. Clean Technologies and Environmental Policy, 20, 1387-1397.
  • Rosas-Mendoza E.S., Contreras J.M., Aguilar-Lasserre A.A., Vallejo-Cantú N.A., Alvarado-Lassman A., (2020). Evaluation of bioenergy potential from citrus effluents through anaerobic digestion. Journal of Cleaner Production, 254, 120128. Sahu O.P. ve Chaudhari P.K. (2013). Review on chemical treatment of industrial waste water. Journal of Applied Sciences and Environmental Management, 17 (2) 241-257.
  • Saraçoğlu T. (2017). Bazı narenciye türlerinin seçilmiş fiziksel ve hidrodinamik özellikleri. Anadolu Tarım Bilimleri Dergisi, 32, 206-215.
  • Sharma K., Mahato N., Cho M.H., ve Lee Y.R. (2017). Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition, 31, 29-46.
  • Su Kirliliği Kontrolü Yönetmeliği (2004). Resmî Gazete Tarihi: 31.12.2004, Resmî Gazete Sayısı: 25687.
  • Speece, R.E. (1996). Anaerobic biotechnology for industrial wastewaters. Archae Press, Nashville, Tennesse. Teh, C. Y., Budiman, P. M., Shak, K. P. Y., ve Wu, T. Y. (2016). Recent advancement of coagulation–flocculation and its application in wastewater treatment. Industrial & Engineering Chemistry Research, 55 (16), 4363-4389.
  • Osorio, F., Torres, J.C. ve Hontoria, E. (2006). Study of Biological Aerated Filters for the Treatment of Effuents from the Citrus Industry. Journal of Environmental Science and Health Part A: Toxic/Hazardous Substances and Environmental Engineering, 41, 2683–2697.
  • Van Haandel A.C. ve Lettinga G. (1994). Anaerobic Sewage Treatment. John Wiley ve Sons Ltd, England. Yılmaz T., Yılmaz. K. (2019). Tekstil atıksuyu ve sentetik boyarmadde çözeltilerinden renk ve koi gideriminde alum ve magnezyum klorürün karşılaştırılması. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 22 (4) , 271-280.
  • Zaimoğlu Z. ve Bozkurt S. (2010). Yapay sulak alanlarda atıksu arıtımı. Nobel Yayınevi, Adana.
  • Zema D.A., Calabro P.S., Folino A., Tamburino V., Zappia G. ve Zimbone S.M. (2019). Wastewater management in citrus processing industries: an overview advantages and limits. Water, 11, 2481.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Environmental Engineering
Authors

Hasan Kıvanç Yeşiltaş 0000-0003-3331-3209

Çağatayhan Bekir Ersü 0000-0001-6289-6947

Publication Date September 3, 2021
Submission Date November 19, 2020
Published in Issue Year 2021

Cite

APA Yeşiltaş, H. K., & Ersü, Ç. B. (2021). NARENCİYE ATIKSULARININ ARITILABİLİRLİĞİNDE KOAGÜLASYON-FLOKÜLASYON METODUNUN UYGULANABİLİRLİĞİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 24(3), 126-137. https://doi.org/10.17780/ksujes.828568