Research Article
BibTex RIS Cite

SYNTHESIS OF HYDROXYAPATITE FROM EUROPEAN SEA BASS (DICENTRARCHUS LABRAX) SCALES AND INVESTIGATION OF ITS USABILITY IN Pb(II) REMOVAL FROM WATERS

Year 2021, , 154 - 165, 03.09.2021
https://doi.org/10.17780/ksujes.895607

Abstract

In this study, low-cost and eco-friendly hydroxyapatite (FS-HAp) particles were obtained from the raw fish scales of European Seabass (Dicentrarchus labrax), and used as adsorbent material to remove Pb(II) ions from solutions. For this purpose, experiments were carried out in the aqueous solutions prepared at different Pb(II) concentrations to determine optimum pH, adsorbent concentration, reaction time and initial Pb(II) concentration. Optimum removal conditions for Pb(II) adsorption onto FS-HAp were determined as pH 4.0, adsorbent concentration of 7.5 g/L, reaction time of 60 min, and initial Pb(II) concentration of 50 mg/L. Under these experimental conditions, the maximum Pb(II) removal was obtained as 97%. According to results of the study, hydroxyapatite obtained from fish scales was found to be highly efficient material to remove Pb(II) ions from water by adsorption method in order to reach high efficiency values when compared with many adsorbent materials.

References

  • Banerjee, S., Bagchi, B., Bhandary, S., Kool, A., Hoque, N.A., Thakur, P., & Das, S. (2018). A facile vacuum assisted synthesis of nanoparticle impregnated hydroxyapatite composites having excellent antimicrobial properties and biocompatibility. Ceramics International, 44(1):1066-1077.
  • Chen, J., Liu, J., Deng, H., Yao, S., & Wang, Y. (2020). Regulatory synthesis and characterization of hydroxyapatite nanocrystals by a microwave-assisted hydrothermal method. Ceramics International, 46:2185–2193.
  • Chen, J.P., & Chang, F.N. (2012). Preparation and characterization of hydroxyapatite/gelatin composite membranes for immunoisolation. Applied Surface Science, 262(1):176– 183.
  • Ferri, M., Campisi, S., Scavini, M., Evangelisti, C., Carniti, P., & Gervasini, A. (2019). In-depth study of the mechanism of heavy metal trapping on the surface of hydroxyapatite. Applied Surface Science, 475:397–409.
  • Gupta, P., Vermani, K., & Garg, S. (2012). Hydrogels from controlled release to ph-responsive drug delivery. Drug Discovery Today, 7(10): 569-579.
  • Harja, M., & Ciobanu, G. (2018). Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite. Science of the Total Environment, 628-629:36-43.
  • Haşimi, DÜ. (2006). metallerin aljinat bilyelerine adsorplanma mekanizmasının ve kinetiğinin incelenmesi, Gebze Yüksek Teknoloji Enstitüsü ve Fen Bilimleri Enstitüsü Çevre Mühendisliği Ana Bilim Dalı, Yüksek Lisans Tezi.
  • Ibrahim, M., Labaki, M., Giraudon, J.M., & Lamonier, J.F. (2020). Hydroxyapatite, a multifunctional material for air, water and soil pollution control: A review. Journal of Hazardous Materials, 383:121139.
  • Kamieniak, J., Kelly, P.J., Banks, C.E., & Doyle, A.M. (2018). Mechanical, pH and thermal stability of mesoporous hydroxyapatite. J Inorg Organomet Polym, 28: 84–91.
  • Kongsri, S., Ayuttaya, P.L.N, Yookhum, S., Techawongstein, S., & Chanthai, S. (2013). Characterization of hydroxyapatite nanoparticles from fish scale waste and its adsorption of carotenoids. Asian Journal of Chemistry, 25(10): 5847-5850.
  • Nyoo, J., Handoyo, N., Kristiani, V., & Adi, S. (2014). Pomacea sp shell to hydroxyapatite using the ultrasound–microwave method (U–M). Ceramics International, 40:11453–11456.
  • Pai, S., Kini, S.M., Selvaraj, R., & Pugazhendhi, A. (2020). A review on the synthesis of hydroxyapatite, its composites and adsorptive removal of pollutants from wastewater. Journal of Water Process Engineering, 38:101574.
  • Phatai, P. (2019). Structural characterization and antibacterial activity of hydroxyapatite synthesized via sol-gel method using glutinous rice as a template. J. Solgel Sci. Technol., 89:764–775.
  • Pon-On, W., Suntornsaratoon, P., Charoenphandhu, N., Thongbunchoo, J., Krishnamra, N., & Tang, I.M. (2016). Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative material. Materials Science and Engineering C, 62:183-189.
  • Thanh, D.N., Novak, P., Vejpravova, J., Vu, H.N., Lederer, J., & Munshi, T. (2018). Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods. Journal of Magnetism and Magnetic Materials, 456:451-460.
  • Trakoolwannachai, V., Kheolamai, P., & Ummartyotin, S. (2019). Characterization of hydroxyapatite from eggshell waste and polycaprolactone (pcl) composite for scaffold material. Composites Part B, 173:106974.
  • Utara, S., & Klinkaewnarong, J. (2015). Sonochemical synthesis of nano-hydroxyapatite using natural rubber latex as a templating agent. Ceramics International, 41(10):14860-14867.

ATIK BALIK PULLARINDAN HIDROKSİAPATİT SENTEZİ VE SULARDAN Pb(II) GIDERIMINDE KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI

Year 2021, , 154 - 165, 03.09.2021
https://doi.org/10.17780/ksujes.895607

Abstract

Bu çalışmada, Avrupa Deniz Levreği (Dicentrarchus labrax) pullarından düşük maliyetli ve çevre dostu hidroksiapatit (BP-HAp) partikülleri elde edilmiş ve su ortamından kurşun-Pb(II) iyonlarını uzaklaştırmak için adsorban malzeme olarak kullanılmıştır. Bu amaçla, optimum pH, adsorban konsantrasyonu, reaksiyon süresi ve başlangıç Pb(II) konsantrasyonunu belirlemek için farklı Pb(II) konsantrasyonlarında hazırlanan sulu çözeltilerde deneyler yapılmıştır. BP-HAp üzerine Pb(II) adsorpsiyonu için optimum giderim koşulları pH 4.0, adsorban konsantrasyonu 7,5 g/L, reaksiyon süresi 60 dk ve başlangıç Pb(II) konsantrasyonu 50 mg/L olarak belirlenmiştir. Bu deneysel koşullar altında, maksimum Pb(II) giderimi %97 olarak elde edilmiştir. Çalışmanın sonuçlarına göre, balık pullarından elde edilen hidroksiapatit, birçok adsorban materyale kıyasla yüksek verimlilik değerlerine ulaşmak için adsorpsiyon yöntemi ile sudan Pb(II) iyonlarını uzaklaştırmada oldukça verimli bir materyal olarak bulunmuştur.

References

  • Banerjee, S., Bagchi, B., Bhandary, S., Kool, A., Hoque, N.A., Thakur, P., & Das, S. (2018). A facile vacuum assisted synthesis of nanoparticle impregnated hydroxyapatite composites having excellent antimicrobial properties and biocompatibility. Ceramics International, 44(1):1066-1077.
  • Chen, J., Liu, J., Deng, H., Yao, S., & Wang, Y. (2020). Regulatory synthesis and characterization of hydroxyapatite nanocrystals by a microwave-assisted hydrothermal method. Ceramics International, 46:2185–2193.
  • Chen, J.P., & Chang, F.N. (2012). Preparation and characterization of hydroxyapatite/gelatin composite membranes for immunoisolation. Applied Surface Science, 262(1):176– 183.
  • Ferri, M., Campisi, S., Scavini, M., Evangelisti, C., Carniti, P., & Gervasini, A. (2019). In-depth study of the mechanism of heavy metal trapping on the surface of hydroxyapatite. Applied Surface Science, 475:397–409.
  • Gupta, P., Vermani, K., & Garg, S. (2012). Hydrogels from controlled release to ph-responsive drug delivery. Drug Discovery Today, 7(10): 569-579.
  • Harja, M., & Ciobanu, G. (2018). Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite. Science of the Total Environment, 628-629:36-43.
  • Haşimi, DÜ. (2006). metallerin aljinat bilyelerine adsorplanma mekanizmasının ve kinetiğinin incelenmesi, Gebze Yüksek Teknoloji Enstitüsü ve Fen Bilimleri Enstitüsü Çevre Mühendisliği Ana Bilim Dalı, Yüksek Lisans Tezi.
  • Ibrahim, M., Labaki, M., Giraudon, J.M., & Lamonier, J.F. (2020). Hydroxyapatite, a multifunctional material for air, water and soil pollution control: A review. Journal of Hazardous Materials, 383:121139.
  • Kamieniak, J., Kelly, P.J., Banks, C.E., & Doyle, A.M. (2018). Mechanical, pH and thermal stability of mesoporous hydroxyapatite. J Inorg Organomet Polym, 28: 84–91.
  • Kongsri, S., Ayuttaya, P.L.N, Yookhum, S., Techawongstein, S., & Chanthai, S. (2013). Characterization of hydroxyapatite nanoparticles from fish scale waste and its adsorption of carotenoids. Asian Journal of Chemistry, 25(10): 5847-5850.
  • Nyoo, J., Handoyo, N., Kristiani, V., & Adi, S. (2014). Pomacea sp shell to hydroxyapatite using the ultrasound–microwave method (U–M). Ceramics International, 40:11453–11456.
  • Pai, S., Kini, S.M., Selvaraj, R., & Pugazhendhi, A. (2020). A review on the synthesis of hydroxyapatite, its composites and adsorptive removal of pollutants from wastewater. Journal of Water Process Engineering, 38:101574.
  • Phatai, P. (2019). Structural characterization and antibacterial activity of hydroxyapatite synthesized via sol-gel method using glutinous rice as a template. J. Solgel Sci. Technol., 89:764–775.
  • Pon-On, W., Suntornsaratoon, P., Charoenphandhu, N., Thongbunchoo, J., Krishnamra, N., & Tang, I.M. (2016). Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative material. Materials Science and Engineering C, 62:183-189.
  • Thanh, D.N., Novak, P., Vejpravova, J., Vu, H.N., Lederer, J., & Munshi, T. (2018). Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods. Journal of Magnetism and Magnetic Materials, 456:451-460.
  • Trakoolwannachai, V., Kheolamai, P., & Ummartyotin, S. (2019). Characterization of hydroxyapatite from eggshell waste and polycaprolactone (pcl) composite for scaffold material. Composites Part B, 173:106974.
  • Utara, S., & Klinkaewnarong, J. (2015). Sonochemical synthesis of nano-hydroxyapatite using natural rubber latex as a templating agent. Ceramics International, 41(10):14860-14867.
There are 17 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Environmental Engineering
Authors

Ertuğrul Atıcı 0000-0002-6712-5321

Yağmur Uysal 0000-0002-7217-8217

Publication Date September 3, 2021
Submission Date March 12, 2021
Published in Issue Year 2021

Cite

APA Atıcı, E., & Uysal, Y. (2021). SYNTHESIS OF HYDROXYAPATITE FROM EUROPEAN SEA BASS (DICENTRARCHUS LABRAX) SCALES AND INVESTIGATION OF ITS USABILITY IN Pb(II) REMOVAL FROM WATERS. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 24(3), 154-165. https://doi.org/10.17780/ksujes.895607