HEKSİLSİYANOBİFENİL, OKTİLSİYANOBİFENİL VE E7 NEMATİK SIVI KRİSTALLERİN DİELEKTRİK ÖZELLİKLERİ
Yıl 2021,
Cilt: 24 Sayı: 3, 198 - 215, 03.09.2021
Şükrü Özğan
,
Engin Avşar
Öz
Bu çalışmada heksilsiyanobifenil (6CB), oktilsiyanobifenil (8CB) ve E7 nematik sıvı kristallerin dielektrik sabitinin frekans ve gerilime bağlı olarak değişimleri incelenmiştir. 6CB, 8CB ve E7 sıvı kristallerin dielektrik sabitinin gerçek kısmı 0-100 Hz frekanslarda büyük değerlere sahip ancak hızlı bir şekilde düşme göstermekte, 100 Hz-0.1 MHz aralığında sabit kalıyor, 0.1 MHz den sonra ani düşerek sıfıra yaklaşmaktadır. Bu sıvı kristal numunelerin dielektrik sanal kısmı ise düşük frekans bölgesinde yüksek değerlere sahiptir ve farklı frekanslarda bir veya iki pik yaparak azalmaktadır. 6CB ve 8CB sıvı kristallerin dielektrik sabitinin gerçek kısmı voltaj artışına bağlı olarak benzer şekilde sabit bir davranış sergilemektedir. E7 sıvı kristalin dielektrik sabitinin gerçek kısmı ise düşük voltajlarda küçük değerlere, yaklaşık 6 V civarında birden bire bir artışa ve daha büyük değere sahip olduğu görülmektedir. 6CB ve 8CB’nin dielektrik sanal kısmı düşük voltajlarda büyük değere sahip ancak belli bir voltajdan sonra azalmaktadır. E7’nin dielektrik sanal kısmı diğerlerinden biraz farklılık göstermekte, düşük voltajda küçük değerlere sahip ancak belli bir voltajdan sonra bir miktar artış görülmektedir.
Kaynakça
- Castellano, J. A. (2006). Modifying light: ubiquitous today, liquid-crystal displays are the outgrowth of more than a century of experimentation and development. American scientist, 94(5), 438-445.
- Chen, A. G., & Brady, D. J. (1992). Real-time holography in azo-dye-doped liquid crystals. Optics letters, 17(6), 441-443.
- Eskalen, H., & Özğan, Ş. (2014). Altın Nanoparçacıklarla Katkılandırılan Nematik Sıvı Kristallerin İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 2(2), 407-414.
- Eskalen, H. Kerli, S., & Özğan, Ş. (2017). Hydrothermally produced cobalt oxide nanostructures at different temperatures and effect on phase transition temperature and threshold voltage of nematic liquid crystal host. Cobalt (InTech, 2017), 71.
Eskalen, H., Okumuş, M., & Özgan, Ş. (2019). Electro-optical, thermal and dielectric properties of ternary mixture of E7/6CB/6BA liquid crystal mixture complex. Optik, 187, 223-229.
- Gürmen, S., Ebin, B., & İTÜ, M. (2008). Nanopartiküller ve üretim yöntemleri-1. Metalurji Dergisi, 150, 31-38.
- Gürlük, M., Abdulkadir, H. A., Akkuş, M. S., Akkurt, F., & Alicilar, A. (2017). Comparison of guest–host liquid crystal systems doped with azo or anthraquinone dyes. Iranian Journal of Science and Technology, Transactions A: Science, 41(1), 1-5.
Kim, Y. K. (2015). Topological defects in lyotropic and thermotropic nematics. Kent State University.Matharu, A. S., Jeeva, S., & Ramanujam, P. S. (2007). Liquid crystals for holographic optical data storage. Chemical Society Reviews, 36(12), 1868-1880.
- Okumus, M. (2013). Investigation of the phase transition and absorption properties of liquid crystal hexylcyanobiphenyl/octylcyanobiphenyl mixtures. Asian Journal of Chemistry, 25(7), 3879.
- Okumuş, M., Özgan, Ş., & Yılmaz, S. (2014). Thermal and optical properties of some hydrogen-bonded liquid crystal mixtures. Brazilian Journal of Physics, 44(4), 326-333.
- Okumuş, M., & Özgan, Ş. (2014). Thermal and mesomorphic properties of ternary mixtures of some hydrogen-bonded liquid crystals. Liquid Crystals, 41(9), 1293-1302.
- Okumuş, M., Özgan, Ş., Kırık, İ., & Kerli, S. (2016). Thermal and optical characterization of liquid crystal 4′-hexyl-4-biphenylcarbonitrile/4-hexylbenzoic acid mixtures. Journal of Molecular Structure, 1120, 150-155.
- Okumuş, M. (2017). Bazı Üçlü Karıştırılmış Hidrojen Bağlı Sıvı Kristallerin Termal özelliklerine 4-oktiloksi-4'-siyanobifenil (8OCB) mezojeninin etkisi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 17(1), 101-108.
Özgan, Ş. & Okumuş, M. (2011). Thermal and spectrophotometric analysis of liquid crystal 8CB/8OCB mixtures. Brazilian Journal of Physics, 41(2-3), 118.
- Özğan, Ş. (2017). Investigating of dielectric anisotropy and birefringence of binary liquid crystal mixtures. International Journal of Chemistry and Technology, 1(1), 1-6.
- Özgan, Ş., Eskalen, H., & Tapkıranlı, Y. (2018). Thermal and electro-optic properties of graphene oxide-doped hexylcyanobiphenyl liquid crystal. Journal of Theoretical and Applied Physics, 12(3), 169-176.
- Pal, K. Mohan, M. M., Foley, M., & Ahmed, W. (2018). Emerging assembly of ZnO-nanowires/graphene dispersed liquid crystal for switchable device modulation. Organic Electronics, 56, 291-304.
- Popov, P., Honaker, L. W., Kooijman, E. E., Mann, E. K., & Jákli, A. I. (2016). A liquid crystal biosensor for specific detection of antigens. Sensing and bio-sensing research, 8, 31-35.
- Smith, F. J. (1920). Taylor's principles and practice of medical jurisprudence (Vol. 1). Churchill.
- Singh, S. (2002). Liquid crystals: fundamentals. World Scientific.
- Shiju, E., Arun, R., Varma, M. R., Chandrasekharan, K., Sandhyarani, N., & Varghese, S. (2017). Effect of ferroelectric nanoparticles in the alignment layer of twisted nematic liquid crystal display. Optical Materials, 67, 7-13.
- Sharma, A., Kumar, P., & Malik, P. (2018, May). Effect of zinc oxide nanoparticles on dielectric behavior of nematic liquid crystal. In AIP Conference Proceedings (Vol. 1953, No. 1, p. 100037). AIP Publishing LLC.
- Srilekha, G., Pardhasaradhi, P., Madhav, B. T. P., Manepalli, R. K. N. R., & Rao, M. C. (2020). Design and analysis of 6CB nematic liquid crystal–based rectangular patch antenna for S-band and C-band applications. Zeitschrift für Naturforschung A, 1(ahead-of-print).
- Yoshida, H., Kawamoto, K., Kubo, H., Tsuda, T., Fujii, A., Kuwabata, S., & Ozaki, M. (2010). Nanoparticle‐Dispersed Liquid Crystals Fabricated by Sputter Doping. Advanced Materials, 22(5), 622-626.
- Zakerhamidi, M. S., Kiani, S., Tajalli, H., & Khoshsima, H. (2016). Role of specific and nonspecific intermolecular interaction in electro-optical response of doped 6CHBT nematic liquid crystal with azo dyes. Journal of Molecular Liquids, 221, 608-616.