ÇEVRİMSEL ÖN YÜKLEMENİN POLİPROPİLEN’İN GEVŞEME DAVRANIŞI ÜZERİNDEKİ ETKİSİ
Yıl 2021,
Cilt: 24 Sayı: 4, 359 - 370, 03.12.2021
Necmi Düşünceli
,
Önder Çağdaş Özensoy
Öz
Bu çalışmada, oda sıcaklığında izotaktik polipropilen üzerinde yükleme-boşaltma ve yeniden yükleme sonrası yapılan gevşeme testlerine dair gözlemler rapor edilmiştir. Deneysel veriler, gevşeme testinin başlangıcında maksimum gerilme ve başlangıç gerilmesi arasındaki farkın artmasıyla birlikte gevşeme eğrilerinin şekillerinde belirgin değişiklikler olduğunu göstermiştir. Testin başlangıcında gerilme geleneksel gevşemeden farklı olarak önce artıp sonra monoton olarak azalmaktadır. Basit gevşemeden karma gevşemeye geçişte ön yüklemenin etkisini araştırmak için farklı çevrim sayısı ve gerilme seviyelerinde testler gerçekleştirilmiştir.
Kaynakça
- Ariyama, T. (1993). Stress relaxation behavior after cyclic preloading in polypropylene. Polymer Engineering & Science, 33(22), 1494–1501. https://doi.org/10.1002/pen.760332209
- ASTM INTERNATIONAL. (2014). Astm D638-14. Annual Book of ASTM Standards. https://doi.org/10.1520/D0638-14.1
- Ayoub, G., Zaïri, F., Naït-Abdelaziz, M., & Gloaguen, J. M. (2010). Modelling large deformation behaviour under loading-unloading of semicrystalline polymers: Application to a high density polyethylene. International Journal of Plasticity, 26(3), 329–347. https://doi.org/10.1016/j.ijplas.2009.07.005
- Baral, P., Guillonneau, G., Kermouche, G., Bergheau, J. M., Loubet, J. L., Bennin, T., Ricci, J., Ediger, M. D., Bouvard, J. L., Francis, D. K., Tschopp, M. A., Marin, E. B., Bammann, D. J., Horstemeyer, M. F., Chen, K., Schweizer, K. S., Cifuentes, S. C.,
Frutos, E., Benavente, R., … Ullah, N. (2019). Effect of loading rate on the creep behaviour of epoxy resin insulators by nanoindentation. Macromolecules, 27(2), 11786–11797. https://doi.org/10.1007/s11029-012-9266-6
- Brusselle-Dupend, N., & Cangémi, L. (2008). A two-phase model for the mechanical behaviour of semicrystalline polymers. Part I: Large strains multiaxial validation on HDPE. Mechanics of Materials, 40(9), 743–760. https://doi.org/10.1016/j.mechmat.2008.03.011
- Caelers, H. J. M., Govaert, L. E., & Peters, G. W. M. (2016). The prediction of mechanical performance of isotactic polypropylene on the basis of processing conditions. Polymer, 83, 116–128. https://doi.org/10.1016/j.polymer.2015.12.001
- Detrez, F., Cantournet, S., & Seguela, R. (2011). Plasticity/damage coupling in semi-crystalline polymers prior to yielding: Micromechanisms and damage law identification. Polymer, 52(9). https://doi.org/10.1016/j.polymer.2011.03.012
- Dusunceli, N., Sanporean, C. G., Drozdov, A. D., de Claville Christiansen, J., & Comanici, F.-E. (2021). Mechanical and microstructural characterization of poly(N-isopropylacrylamide) hydrogels and its nanocomposites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. https://doi.org/10.1177/1464420720988301
- Dusunceli, Necmi. (2012). The unusual creep and relaxation behaviour of polypropylene. Journal of Polymer Engineering, 32(3), 167–176. https://doi.org/10.1515/polyeng-2011-0159
- Dusunceli, Necmi, & Aydemir, B. (2011). The effects of loading history and manufacturing methods on the mechanical behavior of high-density polyethylene. Journal of Elastomers and Plastics, 43(5), 451–468. https://doi.org/10.1177/0095244311404181
- Dusunceli, Necmi, & Colak, O. U. (2006). High density polyethylene (HDPE): Experiments and modeling. Mechanics of Time-Dependent Materials. https://doi.org/10.1007/s11043-007-9026-5
- E328-02(08). (2013). Standard Test Methods for Stress Relaxation for Materials and Structures. ASTM Book of Standards, 02(Reapproved 2008).
- Ghoreishy, M. H. R., & Abbassi Sourki, F. (2018). Development of a new combined numerical/experimental approach for the modeling of the nonlinear hyper-viscoelastic behavior of highly carbon black filled rubber compound. Polymer Testing, 70(May), 135–143. https://doi.org/10.1016/j.polymertesting.2018.06.035
- Gordeyev, S. A., & Ward, I. M. (1999). Time dependent recovery of oriented polyethylene. Journal of Materials Science, 34(19), 4767–4773. https://doi.org/10.1023/A:1004691206113
- Heymans, N., & Kitagawa, M. (2004). Modelling “unsual” behaviour after strain reversal with hierarchical fractional models. Rheologica Acta, 43(4), 383–389. https://doi.org/10.1007/s00397-003-0354-3
- Hiss, R., Hobeika, S., Lynn, C., & Strobl, G. (1999). Network stretching, slip processes, and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers. A comparative study. Macromolecules, 32(13). https://doi.org/10.1021/ma981776b
- Hong, K., Rastogi, A., & Strobl, G. (2004). A model treating tensile deformation of semicrystalline polymers: Quasi-static stress-strain relationship and viscous stress determined for a sample of polyethylene. Macromolecules, 37(26). https://doi.org/10.1021/ma049174h
- Jourdan, C., Cavaille, J. Y., & Perez, J. (1989). Mechanical relaxations in polypropylene: A new experimental and theoretical approach. Journal of Polymer Science Part B: Polymer Physics, 27(11), 2361–2384. https://doi.org/10.1002/polb.1989.090271115
- Kästner, M., Obst, M., Brummund, J., Thielsch, K., & Ulbricht, V. (2012). Inelastic material behavior of polymers - Experimental characterization, formulation and implementation of a material model. Mechanics of Materials, 52. https://doi.org/10.1016/j.mechmat.2012.04.011
- Kitagawa, M., Zhou, D., & Qui, J. (1995). Stress‐Strain curves for solid polymers. Polymer Engineering & Science, 35(22), 1725–1732. https://doi.org/10.1002/pen.760352202
- Kitagawa, M., Zhou, D., Shimada, K., & Umeoka, H. (1999). Anomalous behavior associated with unloading in polyethylene. Zairyo/Journal of the Society of Materials Science, Japan, 48(6), 592–597. https://doi.org/10.2472/jsms.48.592
- Lipinski, B. M., Morris, L. S., Silberstein, M. N., & Coates, G. W. (2020). Isotactic Poly(propylene oxide): A Photodegradable Polymer with Strain Hardening Properties. Journal of the American Chemical Society, 142(14). https://doi.org/10.1021/jacs.0c01768
- Mourad, A. H. I., Fouad, H., & Elleithy, R. (2009). Impact of some environmental conditions on the tensile, creep-recovery, relaxation, melting and crystallinity behaviour of UHMWPE-GUR 410-medical grade. Materials and Design, 30(10), 4112–4119. https://doi.org/10.1016/j.matdes.2009.05.001
- Okereke, M. I., Buckley, C. P., & Siviour, C. R. (2012). Compression of polypropylene across a wide range of strain rates. Mechanics of Time-Dependent Materials, 16(4), 361–379. https://doi.org/10.1007/s11043-012-9167-z
- Okereke, Michael I., & Akpoyomare, A. I. (2019). Two-process constitutive model for semicrystalline polymers across a wide range of strain rates. Polymer, 183, 121818. https://doi.org/10.1016/j.polymer.2019.121818
- Tauheed, F., & Sarangi, S. (2014). Damage-induced stress-softening and viscoelasticity of limited elastic materials. Mechanics of Time-Dependent Materials, 18(3), 493–525. https://doi.org/10.1007/s11043-014-9239-3
- Wang, F., & Weiss, R. A. (2018). Thermoresponsive Supramolecular Hydrogels with High Fracture Toughness. Macromolecules, 51(18), 7386–7395. https://doi.org/10.1021/acs.macromol.8b00490
- Zrida, M., Laurent, H., Rio, G., Pimbert, S., Grolleau, V., Masmoudi, N., & Bradai, C. (2009). Experimental and numerical study of polypropylene behavior using an hyper-visco-hysteresis constitutive law. Computational Materials Science, 45(2), 516–527. https://doi.org/10.1016/j.commatsci.2008.11.017