GFRP DONATILI BETONARME BİR YAPININ PERFORMANSININ KARŞILAŞTIRMALI İNCELENMESİ
Yıl 2023,
Cilt: 26 Sayı: 2, 346 - 362, 03.06.2023
Elif Toplu
,
Şeymanur Arslan
,
Osman Kırtel
,
Ferhat Aydın
Öz
Son yıllarda liflerle güçlendirilmiş polimerler (FRP), inşaat alanında kullanılan yeni nesil yapı malzemelerinden biri olmuştur. FRP malzemelerin kimyasallara ve korozyona karşı dayanıklılığının yüksek olması nedeniyle çelik donatıya alternatif olarak kullanımı özellikle yurt dışında köprülerde, istinat duvarlarında ve korozyonun sorun teşkil ettiği uygulamalarda tercih edilmektedir. FRP malzemelerin yapı elemanlarında donatı olarak kullanımı ACI 440.1R-15 standartlarına göre yapılmaktadır. Ancak Türkiye’de henüz FRP donatılar ile ilgili bir standart geliştirilmemiştir. FRP türleri arasında ekonomik anlamda en çok tercih edilen donatı türü cam liflerle güçlendirilmiş polimer (GFRP) donatılardır. Bu çalışmada GFRP malzemenin bir yapıda donatı olarak kullanımının çelik donatılara göre yapısal performansı karşılaştırmalı olarak değerlendirilmiştir. Çalışmada, zaman tanım alanında analiz ve statik itme analizi olmak üzere iki aşamadan oluşmaktadır. Analizlerde ETABS19 yazılımı kullanılmış ve TBDY2018 performans kriterleri hesaplamalarda dikkate alınmıştır. Çalışma sonucunda, çelik donatılı yapı ile GFRP donatılı yapının zaman tanım alanı analizi sonucunda hasar seviyelerinin benzer olmasına rağmen kesit elemanlarındaki dönme oranlarında ve statik itme analizi sonucunda göçme mekanizmalarında farklılıklar gözlemlenmiştir.
Kaynakça
- ACI. (2015). American Concrete Institute). Guide for the Design and Construction of Concrete Reinforced with FRP Bars. ACI 440.1R-15. Farmington Hills, MI.’”
- AFAD. (2018). Türkiye Bina Deprem Yönetmeliği.
- Afifi, Mohammad Z., ; Hamdy, M. Mohamed, and Brahim Benmokrane. (2013). “Axial Capacity of Circular Concrete Columns Reinforced with GFRP Bars and Spirals.” doi: 10.1061/(ASCE).
- Aiello, Maria Antonietta, Marianovella Leone, and Marisa Pecce. (2007). “Bond Performances of FRP Rebars-Reinforced Concrete.” Journal of Materials in Civil Engineering 19(3):205–13. doi: 10.1061/(ASCE)0899-1561(2007)19:3(205).
- Aliasghar-Mamaghani, Mojtaba, and Alireza Khaloo. (2018). Seismic Behavior of Concrete Moment Frame Reinforced with GFRP Bars. doi: 10.1016/j.compositesb.2018.10.082.
- Alves, Juliana, Amr El-Ragaby, and Ehab El-Salakawy. (2010). Durability of GFRP Bars’ Bond to Concrete under Different Loading and Environmental Conditions. Journal of Composites for Construction 15(3):249–62. doi: 10.1061/(ASCE)CC.1943-5614.0000161.
- Ashrafi, Hamed, Milad Bazli, and Asghar Vatani Oskouei. (2016). Enhancement of Bond Characteristics of Ribbed-Surface GFRP Bars with Concrete by Using Carbon Fiber Mat Anchorage. doi: 10.1016/j.conbuildmat.2016.12.083.
- Aydın, Ferhat, and Şeymanur Arslan. (2021). Investigation of the Durability Performance of FRP Bars in Different Environmental Conditions. Advances in Concrete Construction 12(4):295–302. doi: doi.org/10.12989/acc.2021.12.4.295.
- Aydınoğlu, M. N. (2003). An Incremental Response Spectrum Analysis Procedure Based on Inelastic Spectral Deformation for Multi-Mode Seismic Evaluation. Bulletin of Earthquake Engineering 1(1):3–36.
- Bazli, Milad, Hamed Ashrafi, and Asghar Vatani Oskouei. (2016). Effect of Harsh Environments on Mechanical Properties of GFRP Pultruded Profiles. doi: 10.1016/j.compositesb.2016.06.019.
- Bhandari, M., S. D. Bharti, M. K. Shrimali, and T. K. Datta. (2018). Assessment of Proposed Lateral Load Patterns in Pushover Analysis for Base-Isolated Frames. Engineering Structures 175:531–48. doi: 10.1016/J.ENGSTRUCT.2018.08.080.
- CAN/CSA-S806-02. (2009). Design and Construction of Building Components with Fibre-Reinforced Polymers.
Chopra, A. K., and R. K. Goel. (2002). A Modal Pushover Analysis Procedure for Estimating Seismic Demands for Buildings. Earthq Eng Struct Dyn 31(3):561–82.
- Elchalakani, Mohamed, and Guowei Ma. (2017). Tests of Glass Fibre Reinforced Polymer Rectangular Concrete Columns Subjected to Concentric and Eccentric Axial Loading. Engineering Structures 151:93–104. doi: 10.1016/J.ENGSTRUCT.2017.08.023.
- Fajfar, Peter. (2000). No Structural Analysis in Earthquake Engineering—a Breakthrough of Simplified Non-Linear Methods. Pp. 1–20 in 12th Eur. Conf. Earthq. Eng.
- Feng, Peng, Jie Wang, Yi Wang, David Loughery, and Ditao Niu. (2014). Effects of Corrosive Environments on Properties of Pultruded GFRP Plates. Composites Part B: Engineering 67:427–33. doi: 10.1016/J.COMPOSITESB.2014.08.021.
- Garcia-Espinel, J. D., D. Castro-Fresno, P. Parbole Gayo, and F. Ballester-Muñoz. (2015). Effects of Sea Water Environment on Glass Fiber Reinforced Plastic Materials Used for Marine Civil Engineering Constructions. Materials & Design (1980-2015) 66(PA):46–50. doi: 10.1016/J.MATDES.2014.10.032.
- Ghomi, Shervin K., and Ehab El-Salakawy. (2019). Seismic Behavior of GFRP-Reinforced Concrete Interior Beam–Column–Slab Subassemblies. Journal of Composites for Construction 23(6):04019047. doi: 10.1061/(asce)cc.1943-5614.0000980.
- Goldston, M., A. Remennikov, and M. Neaz Sheikh. (2016). Experimental Investigation of the Behaviour of Concrete Beams Reinforced with GFRP Bars under Static and Impact Loading. Engineering Structures 113:220–32. doi: 10.1016/J.ENGSTRUCT.2016.01.044.
- Guadagnini, Maurizio, Kypros Pilakoutas, and Peter Waldron. (2006). Shear Resistance of FRP RC Beams: Experimental Study. Journal of Composites for Construction 10(6):464–73. doi: 10.1061/(ASCE)1090-0268(2006)10:6(464).
- Guérin, M., H. M. Mohamed, B. Benmokrane, C. K. Shield, and A. Nanni. (2018). Effect of Glass Fiber-Reinforced Polymer Reinforcement Ratio on Axial-Flexural Strength of Reinforced Concrete Columns. Structural Journal 115(4):1049–61. doi: 10.14359/51701279.
- Hao, Q. D., B. Wang, and J. P. Ou. (2006). Fiber Reinforced Polymer Rebar’s Application to Civil Engineering. Concrete 9(1):38–40.
- Harajli, M., and M. Abouniaj. (2010). Bond Performance of GFRP Bars in Tension: Experimental Evaluation and Assessment of ACI 440 Guidelines. Journal of Composites for Construction 14(6):659–68. doi: 10.1061/(ASCE)CC.1943-5614.0000139.
- Harris, Harry G., Win Somboonsong, and Frank K. Ko. (1998). New Ductile Hybrid FRP Reinforcing Bar for Concrete Structures. Journal of Composites for Construction 2(1):28–37. doi: 10.1061/(ASCE)1090-0268(1998)2:1(28).
- Jan, Tysh Shang, Ming Wei Liu, and C. Kao Ying Chieh. (2004). An Upper-Bound Pushover Analysis Procedure for Estimating the Seismic Demands of High-Rise Buildings. Engineering Structures 26(1):117–28. doi: 10.1016/J.ENGSTRUCT.2003.09.003.
- Kim, Sun Pil, and Yahya C. Kurama. (2008). An Alternative Pushover Analysis Procedure to Estimate Seismic Displacement Demands. Engineering Structures 30(12):3793–3807. doi: 10.1016/J.ENGSTRUCT.2008.07.008.
- Krawinkler, Helmut. (2006). Importance of Good Nonlinear Analysis. The Structural Design of Tall and Special Buildings 15(5):515–31. doi: 10.1002/TAL.379.
- Lau, Denvid, and Hoat Joen Pam. (2010). Experimental Study of Hybrid FRP Reinforced Concrete Beams. Engineering Structures 32(12):3857–65. doi: 10.1016/J.ENGSTRUCT.2010.08.028.
- Mander, J. B., M. J. Priestley, and R. Park. (1988). Theoretical Stress-Strain Model for Confined Concrete. Journal of Structural Engineering 114(8):1804–26.
- Poursha, Mehdi, Faramarz Khoshnoudian, and A. S. Moghadam. (2009). A Consecutive Modal Pushover Procedure for Estimating the Seismic Demands of Tall Buildings. Engineering Structures 31(2):591–99. doi: 10.1016/J.ENGSTRUCT.2008.10.009.
- Remennikov, Alex, Matthew W. Goldston, and M. Neaz Sheikh.(2016). Impact Resistance of Ultra-High Strength Concrete Beams with FRP Reinforcement. Proceedings of the 8th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering, CICE 2016 (December):1374–80.
- Salihovic, Amir, and Naida Ademovic. (2018). Nonlinear Analysis of Reinforced Concrete Frame under Lateral Load. Coupled Systems Mechanics 7(3):281–95. doi: 10.12989/csm.2018.7.3.281.
- Shamsher Bahadur Singh. (2015). Analysıs and Desıgn of FRP Reinforced-. McGraw-Hill Education
Suwondo, Riza, Dave Mangindaan, Lee Cunningham, and Sohaib Alama. (2021). Non-Linear Analysis of Seismic Performance of Low-Rise Concrete Buildings in Indonesia. IOP Conference Series: Earth and Environmental Science 794(1):012024. doi: 10.1088/1755-1315/794/1/012024.
- Tarawneh, Ahmad, and Sereen Majdalaweyh. (2020). Design and Reliability Analysis of FRP-Reinforced Concrete Columns. Structures 28:1580–88. doi: 10.1016/J.ISTRUC.2020.10.009.
- Tobbi, Hany, Ahmed Sabry Farghaly, and Brahim Benmokrane. (2012). Concrete Columns Reinforced Longitudinally and Transversally with Glass Fiber-Reinforced Polymer Bars Seismic Behavior of GFRP-Reinforced Flat Plate Structures under Simulated Quasi-Static Cyclic Lateral Loads View Project Strength and Drift Capacity Desi. ACI Structural Journal 109(4).
- Wu, Lili, Xiang Xu, Hui Wang, and Jia Qi Yang. (2022). Experimental Study on Bond Properties between GFRP Bars and Self-Compacting Concrete Construction and Building Materials 320:126186. doi: 10.1016/J.CONBUILDMAT.2021.126186.
- Xue, Weichen, Fei Peng, and Zhiqing Fang. (2018). Behavior and Design of Slender Rectangular Concrete Columns Longitudinally Reinforced with Fiber-Reinforced Polymer Bars. ACI Structural Journal 115(2):311–22. doi: 10.14359/51701131.
- Youssef, M. A., M. E. Meshaly, and A. A. Elansary. (2019). Ductile Corrosion-Free Self-Centering Concrete Elements. Engineering Structures 184:52–60. doi: 10.1016/J.ENGSTRUCT.2019.01.086.
- Youssef, Maged A., Mohamed E. Meshaly, and Ahmed A. Elansary. (2017). Ductile Corrosion-Free GFRP-Stainless Steel Reinforced Concrete Elements. Composite Structures 182:124–31. doi: 10.1016/J.COMPSTRUCT.2017.09.037.
- Zhang, Dawei, Yuxi Zhao, Tamon Ueda, Xiangmin Li, and Qingfeng Xu. (2016). CFRP Strengthened RC Beams with Pre-Strengthening Non-Uniform Reinforcement Corrosion Subjected to Post-Strengthening Wetting/Drying Cycles. Engineering Structures 127:331–43. doi: 10.1016/J.ENGSTRUCT.2016.08.051.