Araştırma Makalesi
BibTex RIS Kaynak Göster

KOCASEYİT POLİMETALİK Cu-As-Ni-Pb DAMAR TİPİ CEVHERLEŞMENİN JEOKİMYASAL VE MİNERALOJİK İNCELENMESİ, HAVRAN (BALIKESİR), KB TÜRKİYE

Yıl 2023, Cilt: 26 Sayı: 2, 489 - 505, 03.06.2023
https://doi.org/10.17780/ksujes.1219019

Öz

Bu çalışmanın temel amacı, Türkiye'nin kuzeybatısındaki Kocaseyit bölgesindeki (Balkesir-Havran ilçesi) polimetalik Cu-As-Ni-Pb damar tipi mineralizasyonunun kökenini daha iyi anlamaktır. Bu, mineralizasyonun ve ilişkili olduğu hidrotermal alterasyon türlerinin mineralojik, petrolojik ve jeokimyasal özelliklerinin incelenmesiyle gerçekleştirilmiştir. Kocaseyit bölgesi, Üst Paleozoik yaşlı Kalabak Formasyonu, Jura yaşlı Bayırköy ve Bilecik Formasyonları ile Oligosen-Miyosen yaşlı Düztarla granitoyitleri tarafından kesilen Paleosen-Eosen yaşlı Bağburun Formasyonundan oluşmaktadır. Düztarla granitoyitleri ile dokanaktaki Balya Formasyonu'ndaki (arkozik kumtaşları) KD-GB fay zonu boyunca lokalize olan polimetalik Cu-As-Ni-Pb damar tipi cevherleşme göstermektedir. Cevherleşme ile ilişkili olarak az miktarda karbonatlaşma ve kloritleşme ile birlikte yoğun serisitleşme, kaolinleşme ve piritleşme, çalışma alanında gözlenen baskın alterasyon tipleridir. Çalışma alanında üç cevherleşme fazı belirlenmiştir.Magmatik-hidrotermal fazda, pentlandit, pirit ve bazı arsenopirit minerallerinin oluştuğu gözlenmektedir. Hidrotermal fazda, pirit, arsenopirit, kalkopirit ve sfalerit mineralleri oluşmuştur. Süpergen faz döneminde ise kalkopirit ve piritten sonra sırasıyla malakit, kovellit ve götit oluşumları belirlenmiştir. Granitoyid kayaçlar, kalk-alkali metaalumina I-tipi granitlere özgü özellikler sergilemektedir. Granodiyorit örnekleri granodiyorit, monzonit ve kuvars-monzonit, granit örnekleri ise granit olarak sınıflandırılmış, manyetit serileri ile uyumlu ve geç orojenik ortamda oluşmuşlardır. Alterasyona uğramış kayaçların jeokimyasal özellikleri, bunların Mn-karbonat-serisit-klorit alterasyonu ile birlikte serisit-pirit-klorit alterasyonundan güçlü bir şekilde etkilendiklerini ortaya koymuştur. Alterasyon indeksi ve K2O indeksinin Hafif nadir toprak elementleri (HNTE) ve Ağır nadir toprak elementleri (ANTE) ile korelasyonlarına göre ya HNTE'lerin hidrotermal çözeltilerden kayalara taşınabildiğini ya da HNTE'lerinin kayalarda zenginleştiğini göstermektedir. MgO indeksinin HNTE ve ANTE arasındaki ilişkiye göre, serisitleşme (K bakımından zengin) oluşumunun kloritleşme oluşumundan daha yaygın ve yoğun bir şekilde meydana geldiğini göstermektedir.

Teşekkür

Öncelikle İTÜ Rektörlüğü’ne, jeokimyasal analizler sırasındaki çabaları dolayısıyla İstanbul Teknik Üniversitesi Jeokimya Araştırma Laboratuvarı (ITU-JAL) çalışma ekibine ve bilimsel olarak makalenin gelişmesini sağlayan editör ve hakemlere teşekkür ederiz.

Kaynakça

  • Abdelnasser, A., Kumral, M., Zoheir, B., Karaman, M., & Weihed, P. (2018). REE geochemical characteristics and satellite-based mapping of hydrothermal alteration in Atud gold deposit, Egypt. Journal of African Earth Sciences, 145, 317-330.
  • Abdelnasser, A., Kumral, M., Zoheir, B., & Yilmaz, H. (2022). Evolution of the Tepeoba porphyry-skarn Cu-Mo-Au deposit, NW Turkey: New mineralogical and geochemical findings. Ore Geology Reviews, 147, 104967.
  • Altunkaynak, Ş., Dilek, Y., Genç, C. Ş., Sunal, G., Gertisser, R., Furnes, H., & Yang, J. (2012). Spatial, temporal and geochemical evolution of Oligo–Miocene granitoid magmatism in western Anatolia, Turkey. Gondwana Research, 21(4), 961-986.
  • Akiska, S., Demirela, G., & Sayili, S. (2013). Geology, mineralogy and the Pb, S isotope study of the Kalkim Pb-Zn+/-Cu deposits, Biga Peninsula, NW Turkey. Journal of Geosciences, 58(4).
  • Altınlı, İ. E. (1973a). Bilecik Jurasiği. Cumhuriyetin 50. yılı Yerbilimleri Kongresi, 159-187, Ankara.
  • Aslaner, M. (1965). Etude géologique et pétrograhique de la région d’Edremit-Havran (Turquie): MTA Yayım no: 110, 98 pp.
  • Bingöl, E., Akyürek, B., & Korkmazer, B. (1973). Biga yarımadasının jeolojisi ve Karakaya formasyonunun bazı özellikleri, Cumhuriyetin 50. yılı Yerbilimleri Kong. Tebliğleri, s. 70, Ankara.
  • Chappell, B. W., & White, A. J. R. (1992). I-and S-type granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83 (1-2), 1-26.
  • Duru, M., Pehlivan, Ş., Şentürk, Y., Yavaş, F., & Kar, H. (2004). New results on the lithostratigraphy of the Kazdağ Massif in northwest Turkey. Turkish Journal of Earth Sciences, 13(2), 177-186.
  • Duru, M., Pehlivan, Ş., Dönmez, M., Ilgar, A. ve Akçay, A. E. (2007). Balıkesir –İ18 Paftası Jeoloji Haritası, Maden Tetkik ve Arama Müdürlüğü, Ankara.
  • Duru, M., Pehlivan, Ş., Aral, İ.O., Şentürk, Y., Yavaş, F., & Kar, H. (2012). Biga Yarımadası’nın Tersiyer Öncesi Jeolojisi, M.T.A. Özel Yayınlar Serisi, No 28, 7-74.
  • El Bouseily, A. M., & El Sokkary, A. A. (1975). The relation between Rb, Ba and Sr in granitic rocks. Chemical Geology, 16(3), 207-219.
  • Ersoy, Y., Helvacı, C., & Palmer, M.R. (2012). Petrogenesis of the Neogene volcanic units in the NE-SW trending basins in western Anatolia, Turkey. Contributions to Mineralogy and Petrology, 163, 379-401.
  • Gümüş, A. (1964). Contribution â l'etude geologique du secteur septentrional de Kalabak Köy-Eymir Köy (region d'Edremit), Turquie. M.T.A. Publ., no. 117, 109 p.
  • Gözler, M.Z. (1986). Kazdağ batısı Mıhlıdere Vadisi’nin jeolojik petrografik incelenmesi. TJK Bülteni, C. 29, 133-142.
  • Irvine, T.N., & Baragar, W.R.A. (1971). A guide to chemical classification of the common volcanic rocks. Can. J. Earth Sci., 8, 523–548.
  • Ishihara, S. (1977). The magnetite-series and ilmenite-series granitic rocks. Mining geology, 27(145), 293-305.
  • Ishikawa, Y., Sawaguchi, T., Iwaya, S., & Hariuchi, M. (1976). Delineation of prospecting targets for Kuroko deposits based on modes of volcanism underlying dacite and alteration halos. Mining Geology 26, 105-117.
  • Janković, S. (1977). The copper deposits and geotectonic setting of the Tethyan Eurasian metallogenic belt. Miner 482 Deposita, 12, 37-47. 483 3.
  • Jiang N., Sun S., Chu X., Mizuta T., Ishiyama D. (2003). Mobilization and enrichment of high-field strength elements during late-and post-magmatic processes in the Shuiquangou syenitic complex, Northern China. Chemical Geology, 200, 117-128.
  • Karaman, M., Kumral, M., Yildirim, D. K., Doner, Z., Afzal, P., & Abdelnasser, A. (2021). Delineation of the porphyry-skarn mineralized zones (NW Turkey) using concentration–volume fractal model. Geochemistry, 81(4), 125802.
  • Krushensky, R., Akçay, Y., & Karaege, E. (1980). Geology of the Karalar-Yeşiller area, Northwest Anatolia; U.S. Geological Survey Bulletin, 1461, 72.
  • Kumral, M., Kabiru, M., Aydogan, M. S., Kocaturk, H., & Unluer, A. T. (2022). The Soma polymetallic hydrothermal Pb–Zn-Cu (±Mo±Ag±Au) mineralizations in the south of Biga Peninsula, NW Turkey: constraints from mineralogy, geochemistry, and fluid inclusion data. Arabian Journal of Geosciences, 15(12), 1-23.
  • Kuno, H. (1968). Origin of andesite and its bearing on the island arc structure. Bulletin Volcanologique, 32(1), 141-176.
  • Kuşcu, I., Yilmazer, E., Güleç, N., Bayir, S., Demirela, G., Kuşcu, G., Kuru, G. And Kaymakcı, N. (2011). U-Pb and 40Ar-39Ar geochronology and isotopic constraints on the genesis of copper-gold-bearing iron oxide deposits in the hasançelebi district, eastern Turkey. Economic Geology, 106(2).
  • Kuşcu, İ. (2019). Skarns and skarn deposits of Turkey. In Mineral Resources of Turkey (pp. 283-336). Springer, Cham.
  • Large, R. R., Gemmell, J. B., Paulick, H., & Huston, D. L. (2001). The alteration box plot: A simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits. Economic geology, 96(5), 957-971.
  • Lottermoser, B. G. (1992). Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews, 7(1), 25-41.
  • Mao, J., Pirajno, F., Lehmann, B., Luo, M., & Berzina, A. (2014). Distribution of porphyry deposits in the Eurasian 484 continent and their corresponding tectonic settings. J Asian Earth Sci., 79, 576-584.
  • Middlemost, E. A., Magmas, K., & Rocks, M. (1985). An introduction to igneous petrology. Magma and magmatic Rocks. Longmans.
  • Okay, A. Đ, Siyako, M. ve Bürkan K. A. (1990). Biga Yarımadası’nın Jeolojisi ve Tektonik Evrimi, T.P.J.D., 2/1, 83-121. Okay, A. I. (1996). Paleo-and Neo-Tethyan events in northwest Turkey: geological and geochronological constraints. Tectonics of Asia, 420-441.
  • Parr, J. M. (1992). Rare-earth element distribution in exhalites associated with Broken Hill-type mineralisation at the Pinnacles deposit, New South Wales, Australia. Chemical Geology, 100(1-2), 73-91.
  • Parsapoor, A., Khalili, M., & Mackizadeh, M. A. (2009). The behaviour of trace and rare earth elements (REE) during hydrothermal alteration in the Rangan area (Central Iran). Journal of Asian Earth Sciences, 34(2), 123-134.
  • Petro, W.L., Vogel, T.A., & Wilband, J.T. (1979). Major-element chemistry of plutonic rock suites from compressional and extensional plate boundaries. Chem. Geol., 26, 217–235.
  • Shand, S. J. (1927). On the relations between silica, alumina, and the bases in eruptive rocks, considered as a means of classification. Geological Magazine, 64(10), 446-449.
  • Shikazono, N., Ogawa, Y., Utada, M., Ishiyama, D., Mizuta, T., Ishikawa, N., & Kubota, Y. (2008). Geochemical behavior of rare earth elements in hydrothermally altered rocks of the Kuroko mining area, Japan. Journal of Geochemical Exploration, 98(3), 65-79.
  • Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313-345.
  • Takahashi, Y., Yoshida, H., Sato, N., Hama, K., Yusa, Y., & Shimizu, H. (2002). W-and M-type tetrad effects in REE patterns for water–rock systems in the Tono uranium deposit, central Japan. Chemical geology, 184(3-4), 311-335.
  • Torres-Alvarado, I. S. (2002). Chemical equilibrium in hydrothermal systems: the case of Los Azufres geothermal field, Mexico. International Geology Review, 44(7), 639-652.
  • Utada, M., Ishikawa, Y., Takahashi, T., & Hashiguchi, H. (1983). The distribution of alteration zones in the western area (Hanaoka-Matsumine-Shakanai mineralization area) of the Hokuroku District, northeast Japan. Mining Geologists Japan Spec. Paper, 11, 125-138.
  • Yigit, O. (2006). Gold in Turkey—a missing link in Tethyan metallogeny. Ore Geology Reviews, 28(2), 147-179.
  • Yigit, O. (2009). Mineral deposits of Turkey in relation to Tethyan metallogeny: implications for future mineral exploration. Economic Geology, 104(1), 19-51.
  • Yigit, O. (2012). A prospective sector in the Tethyan Metallogenic Belt: Geology and geochronology of mineral deposits in the Biga Peninsula, NW Turkey. Ore Geology Reviews, 46, 118-148.
  • Yildirim, D. K. (2022). Genesis of the Halılar Metasediment-Hosted Cu-Pb (±Zn) Mineralization, NW Turkey: Evidence from Mineralogy, Alteration, and Sulfur Isotope Geochemistry. Minerals, 12(8), 991.
  • Zou, H. and Zindler, A. (1996). Constrains on the degree of dynamic partial melting and source composition using concentration ratios in magmas. Geochim. Cosmochim. Acta, 60 (4), 711-717.
  • Zou, H. (1998). Trace element fractionation during modal and nonmodal dynamic melting and open-system melting. A mathematical treatment, Geochim. Cosmochim. Acta, 62, pp. 711-717.
  • Zou, H. (2000). Modeling of trace element fractionation during nonmodal dynamic melting with linear variations in mineral melt distribution coefficients. Geochim. Cosmochim. Acta, 64(6), pp. 1095-1102

GEOCHEMICAL AND MINERALOGICAL INVESTIGATION OF KOCASEYİT POLYMETALLIC Cu-As-Ni-Pb VEIN-TYPE MINERALIZATION, HAVRAN (BALIKESİR), NW TÜRKİYE

Yıl 2023, Cilt: 26 Sayı: 2, 489 - 505, 03.06.2023
https://doi.org/10.17780/ksujes.1219019

Öz

This study aims to provide a better understanding of the genesis of the polymetallic Cu-As-Ni-Pb vein-type mineralization in the Kocaseyit area (Balkesir-Havran district), NW Turkey. This is accomplished by examining the mineralogical, petrological, and geochemical properties of this mineralization and the associated hydrothermal alteration types. The Kocaseyit area is made up of Upper Paleozoic Kalabak Formation, Jurassic Bayırköy, Bilecik Formations, and Paleocene-Eocene Bağburun Formation that were intruded by Oligocene-Miocene Düztarla Pluton. The polymetallic Cu-As-Ni-Pb vein-type mineralization was occurred along the NE-SW fault zone at the arkosic sandstone in contact with the Düztarla granitoids. Intense sericitization, kaolinization, and pyritization are the predominant alteration types associated with mineralization with subordinate carbonatization and chloritization. Three main phases of mineralization are observed in Kocaseyit area. (1) the magmatic-hydrothermal phase has pentlandite, pyrite, and some arsenopyrite minerals. (2) The hydrothermal phase exhibits pyrite, arsenopyrite, chalcopyrite, and sphalerite minerals. In the supergene phase (3), malachite, covellite, and goethite were formed after chalcopyrite and pyrite, respectively. The granitoid rocks exhibit typical calc-alkaline metaluminous I-type granites. They were classified as granodiorite, monzonite, and quartz-monzonite for the granodiorite samples and as granite for the granite samples, matched with magnetite series, and were formed in a late-orogenic environment. The geochemical features of the altered rocks revealed that they are strongly affected by the sericite-pyrite-chlorite alteration with subordinate Mn-carbonate-sericite-chlorite alteration. The behavior of rare earth elements (REE) during alteration and mineralization processes reveals the correlations of alteration index and K2O index with Light rare earth elements (LREE) and Heavy rare earth elements (HREE) show that either LREEs were preferentially added to the rocks from hydrothermal solution, or LREEs were not leached from the rocks. Based on the relationship of MgO index between HREE and LREE, the sericitization (K-rich) formation occurs more widely and intensely than chlorite formation.

Kaynakça

  • Abdelnasser, A., Kumral, M., Zoheir, B., Karaman, M., & Weihed, P. (2018). REE geochemical characteristics and satellite-based mapping of hydrothermal alteration in Atud gold deposit, Egypt. Journal of African Earth Sciences, 145, 317-330.
  • Abdelnasser, A., Kumral, M., Zoheir, B., & Yilmaz, H. (2022). Evolution of the Tepeoba porphyry-skarn Cu-Mo-Au deposit, NW Turkey: New mineralogical and geochemical findings. Ore Geology Reviews, 147, 104967.
  • Altunkaynak, Ş., Dilek, Y., Genç, C. Ş., Sunal, G., Gertisser, R., Furnes, H., & Yang, J. (2012). Spatial, temporal and geochemical evolution of Oligo–Miocene granitoid magmatism in western Anatolia, Turkey. Gondwana Research, 21(4), 961-986.
  • Akiska, S., Demirela, G., & Sayili, S. (2013). Geology, mineralogy and the Pb, S isotope study of the Kalkim Pb-Zn+/-Cu deposits, Biga Peninsula, NW Turkey. Journal of Geosciences, 58(4).
  • Altınlı, İ. E. (1973a). Bilecik Jurasiği. Cumhuriyetin 50. yılı Yerbilimleri Kongresi, 159-187, Ankara.
  • Aslaner, M. (1965). Etude géologique et pétrograhique de la région d’Edremit-Havran (Turquie): MTA Yayım no: 110, 98 pp.
  • Bingöl, E., Akyürek, B., & Korkmazer, B. (1973). Biga yarımadasının jeolojisi ve Karakaya formasyonunun bazı özellikleri, Cumhuriyetin 50. yılı Yerbilimleri Kong. Tebliğleri, s. 70, Ankara.
  • Chappell, B. W., & White, A. J. R. (1992). I-and S-type granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83 (1-2), 1-26.
  • Duru, M., Pehlivan, Ş., Şentürk, Y., Yavaş, F., & Kar, H. (2004). New results on the lithostratigraphy of the Kazdağ Massif in northwest Turkey. Turkish Journal of Earth Sciences, 13(2), 177-186.
  • Duru, M., Pehlivan, Ş., Dönmez, M., Ilgar, A. ve Akçay, A. E. (2007). Balıkesir –İ18 Paftası Jeoloji Haritası, Maden Tetkik ve Arama Müdürlüğü, Ankara.
  • Duru, M., Pehlivan, Ş., Aral, İ.O., Şentürk, Y., Yavaş, F., & Kar, H. (2012). Biga Yarımadası’nın Tersiyer Öncesi Jeolojisi, M.T.A. Özel Yayınlar Serisi, No 28, 7-74.
  • El Bouseily, A. M., & El Sokkary, A. A. (1975). The relation between Rb, Ba and Sr in granitic rocks. Chemical Geology, 16(3), 207-219.
  • Ersoy, Y., Helvacı, C., & Palmer, M.R. (2012). Petrogenesis of the Neogene volcanic units in the NE-SW trending basins in western Anatolia, Turkey. Contributions to Mineralogy and Petrology, 163, 379-401.
  • Gümüş, A. (1964). Contribution â l'etude geologique du secteur septentrional de Kalabak Köy-Eymir Köy (region d'Edremit), Turquie. M.T.A. Publ., no. 117, 109 p.
  • Gözler, M.Z. (1986). Kazdağ batısı Mıhlıdere Vadisi’nin jeolojik petrografik incelenmesi. TJK Bülteni, C. 29, 133-142.
  • Irvine, T.N., & Baragar, W.R.A. (1971). A guide to chemical classification of the common volcanic rocks. Can. J. Earth Sci., 8, 523–548.
  • Ishihara, S. (1977). The magnetite-series and ilmenite-series granitic rocks. Mining geology, 27(145), 293-305.
  • Ishikawa, Y., Sawaguchi, T., Iwaya, S., & Hariuchi, M. (1976). Delineation of prospecting targets for Kuroko deposits based on modes of volcanism underlying dacite and alteration halos. Mining Geology 26, 105-117.
  • Janković, S. (1977). The copper deposits and geotectonic setting of the Tethyan Eurasian metallogenic belt. Miner 482 Deposita, 12, 37-47. 483 3.
  • Jiang N., Sun S., Chu X., Mizuta T., Ishiyama D. (2003). Mobilization and enrichment of high-field strength elements during late-and post-magmatic processes in the Shuiquangou syenitic complex, Northern China. Chemical Geology, 200, 117-128.
  • Karaman, M., Kumral, M., Yildirim, D. K., Doner, Z., Afzal, P., & Abdelnasser, A. (2021). Delineation of the porphyry-skarn mineralized zones (NW Turkey) using concentration–volume fractal model. Geochemistry, 81(4), 125802.
  • Krushensky, R., Akçay, Y., & Karaege, E. (1980). Geology of the Karalar-Yeşiller area, Northwest Anatolia; U.S. Geological Survey Bulletin, 1461, 72.
  • Kumral, M., Kabiru, M., Aydogan, M. S., Kocaturk, H., & Unluer, A. T. (2022). The Soma polymetallic hydrothermal Pb–Zn-Cu (±Mo±Ag±Au) mineralizations in the south of Biga Peninsula, NW Turkey: constraints from mineralogy, geochemistry, and fluid inclusion data. Arabian Journal of Geosciences, 15(12), 1-23.
  • Kuno, H. (1968). Origin of andesite and its bearing on the island arc structure. Bulletin Volcanologique, 32(1), 141-176.
  • Kuşcu, I., Yilmazer, E., Güleç, N., Bayir, S., Demirela, G., Kuşcu, G., Kuru, G. And Kaymakcı, N. (2011). U-Pb and 40Ar-39Ar geochronology and isotopic constraints on the genesis of copper-gold-bearing iron oxide deposits in the hasançelebi district, eastern Turkey. Economic Geology, 106(2).
  • Kuşcu, İ. (2019). Skarns and skarn deposits of Turkey. In Mineral Resources of Turkey (pp. 283-336). Springer, Cham.
  • Large, R. R., Gemmell, J. B., Paulick, H., & Huston, D. L. (2001). The alteration box plot: A simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits. Economic geology, 96(5), 957-971.
  • Lottermoser, B. G. (1992). Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews, 7(1), 25-41.
  • Mao, J., Pirajno, F., Lehmann, B., Luo, M., & Berzina, A. (2014). Distribution of porphyry deposits in the Eurasian 484 continent and their corresponding tectonic settings. J Asian Earth Sci., 79, 576-584.
  • Middlemost, E. A., Magmas, K., & Rocks, M. (1985). An introduction to igneous petrology. Magma and magmatic Rocks. Longmans.
  • Okay, A. Đ, Siyako, M. ve Bürkan K. A. (1990). Biga Yarımadası’nın Jeolojisi ve Tektonik Evrimi, T.P.J.D., 2/1, 83-121. Okay, A. I. (1996). Paleo-and Neo-Tethyan events in northwest Turkey: geological and geochronological constraints. Tectonics of Asia, 420-441.
  • Parr, J. M. (1992). Rare-earth element distribution in exhalites associated with Broken Hill-type mineralisation at the Pinnacles deposit, New South Wales, Australia. Chemical Geology, 100(1-2), 73-91.
  • Parsapoor, A., Khalili, M., & Mackizadeh, M. A. (2009). The behaviour of trace and rare earth elements (REE) during hydrothermal alteration in the Rangan area (Central Iran). Journal of Asian Earth Sciences, 34(2), 123-134.
  • Petro, W.L., Vogel, T.A., & Wilband, J.T. (1979). Major-element chemistry of plutonic rock suites from compressional and extensional plate boundaries. Chem. Geol., 26, 217–235.
  • Shand, S. J. (1927). On the relations between silica, alumina, and the bases in eruptive rocks, considered as a means of classification. Geological Magazine, 64(10), 446-449.
  • Shikazono, N., Ogawa, Y., Utada, M., Ishiyama, D., Mizuta, T., Ishikawa, N., & Kubota, Y. (2008). Geochemical behavior of rare earth elements in hydrothermally altered rocks of the Kuroko mining area, Japan. Journal of Geochemical Exploration, 98(3), 65-79.
  • Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313-345.
  • Takahashi, Y., Yoshida, H., Sato, N., Hama, K., Yusa, Y., & Shimizu, H. (2002). W-and M-type tetrad effects in REE patterns for water–rock systems in the Tono uranium deposit, central Japan. Chemical geology, 184(3-4), 311-335.
  • Torres-Alvarado, I. S. (2002). Chemical equilibrium in hydrothermal systems: the case of Los Azufres geothermal field, Mexico. International Geology Review, 44(7), 639-652.
  • Utada, M., Ishikawa, Y., Takahashi, T., & Hashiguchi, H. (1983). The distribution of alteration zones in the western area (Hanaoka-Matsumine-Shakanai mineralization area) of the Hokuroku District, northeast Japan. Mining Geologists Japan Spec. Paper, 11, 125-138.
  • Yigit, O. (2006). Gold in Turkey—a missing link in Tethyan metallogeny. Ore Geology Reviews, 28(2), 147-179.
  • Yigit, O. (2009). Mineral deposits of Turkey in relation to Tethyan metallogeny: implications for future mineral exploration. Economic Geology, 104(1), 19-51.
  • Yigit, O. (2012). A prospective sector in the Tethyan Metallogenic Belt: Geology and geochronology of mineral deposits in the Biga Peninsula, NW Turkey. Ore Geology Reviews, 46, 118-148.
  • Yildirim, D. K. (2022). Genesis of the Halılar Metasediment-Hosted Cu-Pb (±Zn) Mineralization, NW Turkey: Evidence from Mineralogy, Alteration, and Sulfur Isotope Geochemistry. Minerals, 12(8), 991.
  • Zou, H. and Zindler, A. (1996). Constrains on the degree of dynamic partial melting and source composition using concentration ratios in magmas. Geochim. Cosmochim. Acta, 60 (4), 711-717.
  • Zou, H. (1998). Trace element fractionation during modal and nonmodal dynamic melting and open-system melting. A mathematical treatment, Geochim. Cosmochim. Acta, 62, pp. 711-717.
  • Zou, H. (2000). Modeling of trace element fractionation during nonmodal dynamic melting with linear variations in mineral melt distribution coefficients. Geochim. Cosmochim. Acta, 64(6), pp. 1095-1102
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Jeoloji Mühendisliği
Yazarlar

Demet Kıran Yıldırım 0000-0001-5995-5723

Amr Abdelnasser 0000-0001-5994-7088

Mustafa Kumral 0000-0001-7827-8721

Yayımlanma Tarihi 3 Haziran 2023
Gönderilme Tarihi 14 Aralık 2022
Yayımlandığı Sayı Yıl 2023Cilt: 26 Sayı: 2

Kaynak Göster

APA Yıldırım, D. K., Abdelnasser, A., & Kumral, M. (2023). KOCASEYİT POLİMETALİK Cu-As-Ni-Pb DAMAR TİPİ CEVHERLEŞMENİN JEOKİMYASAL VE MİNERALOJİK İNCELENMESİ, HAVRAN (BALIKESİR), KB TÜRKİYE. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(2), 489-505. https://doi.org/10.17780/ksujes.1219019