Araştırma Makalesi
BibTex RIS Kaynak Göster

GERİ DÖNÜŞTÜRÜLMÜŞ ÇELİK LİF VE CAM ELYAFI KULLANILARAK GÜÇLENDİRİLMİŞ GEOPOLİMER BETONLARIN KIRILMA DAVRANIŞININ İNCELENMESİ

Yıl 2024, Cilt: 27 Sayı: 2, 386 - 400, 03.06.2024
https://doi.org/10.17780/ksujes.1375200

Öz

Geopolimer kompozitlerin gevrek davranışı, dünya çapında yaygın kullanımı için bir sorundur. Bu nedenle geopolimer karışımına süneklik sağlamak amacıyla çeşitli tiplerde lifler eklenmiştir. Bu çalışmada, geri dönüştürülmüş çelik liflerin üretim sürecindeki düşük karbon emisyonundan yararlanmak amacıyla, geri dönüştürülmüş çelik elyaflar cam elyaflarla birlikte hibrit formda kullanıldı. Toplam lif içeriği hacimce %0,6 sabit olarak alınmıştır. Beş farklı geopolimer karışımı hazırlanmış ve her karışım için iki beton prizma dökülmüştür. Bu prizmalar üç noktalı yükleme altında test edildi ve numunelerin yüzeyinin deforme şekli, yüzey yer değiştirme alanını oluşturmak için dijital kamera ile kaydedildi. Çentikli prizmaların kırılma özellikleri (i) yük-CMOD davranışı, (ii) çentik önündeki çatlak ilerlemesi, (iii) kırılma enerjisi, (iv) nihai yük taşıma kapasitesi ve (v) kararsız kırılma tokluğu açısından değerlendirildi. Test sonuçları, hibrit karışımdaki geri dönüştürülmüş çelik lif oranının artmasıyla birlikte lifli geopolimerlerin artık dayanımları, nihai yükü ve kırılma enerjisinin azalma eğiliminde olduğunu ortaya çıkardı. Bu durumun geri dönüştürülmüş çelik liflerin beton içerisindeki heterojen dağılımından kaynaklandığı düşünülmektedir.

Kaynakça

  • Aisheh, Y.I.A., Atrushi, D.S., Akeed, M.H., Qaidi, S., & Tayeh, B.A. (2022). Influence of steel fibers and microsilica on the mechanical properties of ultra-high-performance geopolymer concrete (UHP-GPC). Case Studies in Construction Materials, 17, e01245. https://doi.org/10.1016/j.cscm.2022.e01245
  • Alsaif, A.S., & Abdulrahman S. Albidah, A. (2022). Compressive and flexural characteristics of geopolymer rubberized concrete reinforced with recycled tires steel fibers. Materials Today: Proceedings, International Conference on Advances in Construction Materials and Structures, 65, (pp. 1230–1236). https://doi.org/10.1016/j.matpr.2022.04.182
  • Anvari, M., & Toufigh, V. (2022). Experimental and probabilistic investigation on the durability of geopolymer concrete confined with fiber reinforced polymer. Construction and Building Materials, 334, 127419. https://doi.org/10.1016/j.conbuildmat.2022.127419
  • Başaran, B., Aksoylu, C., Özkılıç, Y.O., Karalar, M., & Hakamy, A., (2023). Shear behaviour of reinforced concrete beams utilizing waste marble powder. Structures, 54, 1090–1100. https://doi.org/10.1016/j.istruc.2023.05.093
  • Blaber, J., Adair, B., & Antoniou, A. (2015). Ncorr: Open-Source 2D Digital Image Correlation Matlab Software. Experimental Mechanics, 55, 1105–1122. https://doi.org/10.1007/s11340-015-0009-1
  • Çelik, A.İ., Tunç, U., Bahrami, A., Karalar, M., Othuman Mydin, M.A., Alomayri, T., & Özkılıç, Y.O., (2023). Use of waste glass powder toward more sustainable geopolymer concrete. Journal of Materials Research and Technology, 24, 8533–8546. https://doi.org/10.1016/j.jmrt.2023.05.094
  • da Silva, A.C.R., Almeida, B.M., Lucas, M.M., Cândido, V.S., da Cruz, K.S.P., Oliveira, M.S., de Azevedo, A.R.G., & Monteiro, S.N. (2022). Fatigue behavior of steel fiber reinforced geopolymer concrete. Case Studies in Construction Materials, 16, e00829. https://doi.org/10.1016/j.cscm.2021.e00829
  • Davidovits, J. (1991). Geopolymers. Journal of Thermal Analysis, 37, 1633–1656. https://doi.org/10.1007/BF01912193
  • Ding, Y., Dai, J.-G., & Shi, C.-J. (2016). Mechanical properties of alkali-activated concrete: A state-of-the-art review. Construction and Building Materials, 127, 68–79. https://doi.org/10.1016/j.conbuildmat.2016.09.121
  • Eskandarinia, M., Esmailzade, M., Hojatkashani, A., Rahmani, A., & Jahandari, S. (2022). Optimized Alkali-Activated Slag-Based Concrete Reinforced with Recycled Tire Steel Fiber. Materials, 15, 6623. https://doi.org/10.3390/ma15196623
  • Farhan, N.A., Sheikh, M.N., & Hadi, M.N.S. (2018). Experimental Investigation on the Effect of Corrosion on the Bond Between Reinforcing Steel Bars and Fibre Reinforced Geopolymer Concrete. Structures, 14, 251–261. https://doi.org/10.1016/j.istruc.2018.03.013
  • Ferreira, L.E.T. (2007). Fracture analysis of a high-strength concrete and a high-strength steel-fiber-reinforced concrete. Mechanics of Composite Materials, 43, 479–486. https://doi.org/10.1007/s11029-007-0045-8
  • Ganesh, A.C., & Muthukannan, M. (2021). Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength. Journal of Cleaner Production, 282, 124543. https://doi.org/10.1016/j.jclepro.2020.124543
  • Gümüş, M., & Arslan, A. (2019). Effect of fiber type and content on the flexural behavior of high strength concrete beams with low reinforcement ratios. Structures, 20, 1–10. https://doi.org/10.1016/j.istruc.2019.02.018
  • Isa, M.N., Pilakoutas, K., Guadagnini, M., & Angelakopoulos, H. (2020). Mechanical performance of affordable and eco-efficient ultra-high performance concrete (UHPC) containing recycled tyre steel fibres. Construction and Building Materials, 255, 119272. https://doi.org/10.1016/j.conbuildmat.2020.119272
  • Jenq, Y., & Shah, S.P. (1985). Two Parameter Fracture Model for Concrete. Journal of Engineering Mechanics, 111, 1227–1241. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:10(1227)
  • Khan, K., Ahmad, W., Amin, M.N., & Nazar, S. (2022). A Scientometric-Analysis-Based Review of the Research Development on Geopolymers. Polymers, 14, 3676. https://doi.org/10.3390/polym14173676
  • Kumar, Y.N., Dean Kumar, B., & Swami, B.L.P. (2022). Mechanical properties of geopolymer concrete reinforced with steel and glass fibers with various mineral admixtures. Materials Today: Proceedings, International Conference on Smart and Sustainable Developments in Materials, Manufacturing and Energy Engineering, 52, (pp. 632–641). https://doi.org/10.1016/j.matpr.2021.10.050
  • Laxmi, G., & Patil, S.G. (2022). Effect of fiber types, shape, aspect ratio and volume fraction on properties of geopolymer concrete – A review. Materials Today: Proceedings, International Conference on Advances in Construction Materials and Structures, 65, (pp. 1086–1094). https://doi.org/10.1016/j.matpr.2022.04.157
  • Li, W., Shumuye, E.D., Shiying, T., Wang, Z., & Zerfu, K. (2022). Eco-friendly fibre reinforced geopolymer concrete: A critical review on the microstructure and long-term durability properties. Case Studies in Construction Materials, 16, e00894. https://doi.org/10.1016/j.cscm.2022.e00894
  • Mastali, M., Dalvand, A., Sattarifard, A.R., & Illikainen, M. (2018). Development of eco-efficient and cost-effective reinforced self-consolidation concretes with hybrid industrial/recycled steel fibers. Construction and Building Materials, 166, 214–226. https://doi.org/10.1016/j.conbuildmat.2018.01.147
  • Meskhi, B., Beskopylny, A.N., Stel’makh, S.A., Shcherban’, E.M., Mailyan, L.R., Shilov, A.A., El’shaeva, D., Shilova, K., Karalar, M., Aksoylu, C., & Özkılıç, Y.O., (2023). Analytical Review of Geopolymer Concrete: Retrospective and Current Issues. Materials, 16, 3792. https://doi.org/10.3390/ma16103792
  • Özkılıç, Y.O., Çelik, A.İ., Tunç, U., Karalar, M., Deifalla, A., Alomayri, T., & Althoey, F., (2023). The use of crushed recycled glass for alkali activated fly ash based geopolymer concrete and prediction of its capacity. Journal of Materials Research and Technology, 24, 8267–8281. https://doi.org/10.1016/j.jmrt.2023.05.079
  • Pająk, M., & Ponikiewski, T. (2013). Flexural behavior of self-compacting concrete reinforced with different types of steel fibers. Construction and Building Materials, 47, 397–408. https://doi.org/10.1016/j.conbuildmat.2013.05.072
  • Qin, X., & Kaewunruen, S. (2022). Environment-friendly recycled steel fibre reinforced concrete. Construction and Building Materials, 327, 126967. https://doi.org/10.1016/j.conbuildmat.2022.126967
  • Ranjbar, N., & Zhang, M. (2020). Fiber-reinforced geopolymer composites: A review. Cement and Concrete Composites, 107, 103498. https://doi.org/10.1016/j.cemconcomp.2019.103498
  • Rashad, A.M. (2020). Effect of steel fibers on geopolymer properties – The best synopsis for civil engineer. Construction and Building Materials, 246, 118534. https://doi.org/10.1016/j.conbuildmat.2020.118534
  • Rashedi, A., Marzouki, R., Raza, A., Ali, K., Olaiya, N.G., & Kalimuthu, M. (2022). Glass FRP-Reinforced Geopolymer Based Columns Comprising Hybrid Fibres: Testing and FEA Modelling. Polymers, 14, 324. https://doi.org/10.3390/polym14020324
  • Ren, R., & Li, L. (2022). Impact of polyethylene fiber reinforcing index on the flexural toughness of geopolymer mortar. Journal of Building Engineering, 57, 104943. https://doi.org/10.1016/j.jobe.2022.104943
  • RILEM-Draft-Recommendation. (1985). Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beames. Materials and Structures, 18(106), 285-290.
  • Sherwani, A.F.H., Younis, K.H., & Arndt, R.W. (2022). Fresh, Mechanical, and Durability Behavior of Fly Ash-Based Self Compacted Geopolymer Concrete: Effect of Slag Content and Various Curing Conditions. Polymers, 14, 3209. https://doi.org/10.3390/polym14153209
  • Simalti, A., & Singh, A.P. (2021). Comparative study on performance of manufactured steel fiber and shredded tire recycled steel fiber reinforced self-consolidating concrete. Construction and Building Materials, 266, 121102. https://doi.org/10.1016/j.conbuildmat.2020.121102
  • Tada, H., Paris, P.C., & Irwin, G.R. (2000). The Stress Analysis of Cracks Handbook. (3rd ed.). ASME Press. https://doi.org/10.1115/1.801535
  • Vijaya Prasad, B., Anand, N., Kiran, T., Jayakumar, G., Sohliya, A., & Ebenezer, S. (2022). Influence of fibers on fresh properties and compressive strength of geo-polymer concrete. Materials Today: Proceedings, International Conference on Innovation and Application in Science and Technology, 57, (pp. 2355–2363). https://doi.org/10.1016/j.matpr.2022.01.426
  • Wang, T., Fan, X., Gao, C., Qu, C., Liu, J., & Yu, G. (2023). The Influence of Fiber on the Mechanical Properties of Geopolymer Concrete: A Review. Polymers, 15, 827. https://doi.org/10.3390/polym15040827
  • Wang, Yi., Chan, C.L., Leong, S.H., & Zhang, M. (2020). Engineering properties of strain hardening geopolymer composites with hybrid polyvinyl alcohol and recycled steel fibres. Construction and Building Materials, 261, 120585. https://doi.org/10.1016/j.conbuildmat.2020.120585
  • Wang, Yijiang., Zheng, T., Zheng, X., Liu, Y., Darkwa, J., & Zhou, G. (2020). Thermo-mechanical and moisture absorption properties of fly ash-based lightweight geopolymer concrete reinforced by polypropylene fibers. Construction and Building Materials, 251, 118960. https://doi.org/10.1016/j.conbuildmat.2020.118960
  • Wang, Z., Bai, E., Huang, H., Liu, C., & Wang, T. (2023). Dynamic mechanical properties of carbon fiber reinforced geopolymer concrete at different ages. Ceramics International, 49, 834–846. https://doi.org/10.1016/j.ceramint.2022.09.056
  • Yolcu, A., Karakoç, M.B., Ekinci, E., Özcan, A., & Sağır, M.A. (2022). Effect of binder dosage and the use of waste rubber fiber on the mechanical and durability performance of geopolymer concrete. Journal Building Engineering, 61, 105162. https://doi.org/10.1016/j.jobe.2022.105162
  • Zada Farhan, K., Azmi Megat Johari, M., & Demirboğa, R. (2022). Evaluation of properties of steel fiber reinforced GGBFS-based geopolymer composites in aggressive environments. Construction and Building Materials, 345, 128339. https://doi.org/10.1016/j.conbuildmat.2022.128339
  • Zhong, H., Poon, E.W., Chen, K., & Zhang, M. (2019). Engineering properties of crumb rubber alkali-activated mortar reinforced with recycled steel fibres. Journal of Cleaner Production, 238, 117950. https://doi.org/10.1016/j.jclepro.2019.117950

INVESTIGATION OF THE FRACTURE BEHAVIOR OF GEOPOLYMER CONCRETE REINFORCED WITH RECYCLED STEEL AND GLASS FIBERS

Yıl 2024, Cilt: 27 Sayı: 2, 386 - 400, 03.06.2024
https://doi.org/10.17780/ksujes.1375200

Öz

The brittleness of the geopolymer composites is an issue for its widespread use worldwide. Therefore, several types of fibers have been added to the geopolymer mixture to provide a ductile manner. In this work, the recycled steel fibers were employed in a hybrid form with glass fibers to take advantage of the low carbon emission in the production process of recycled steel fibers. The total fiber content was taken as constant 0.6% by volume. Five dissimilar geopolymer batches were handled and two concrete prisms were cast for each batch. Those prisms were tested under three-point loading and the deformed shapes of the specimens’ surface were captured by digital camera to generate the surface displacement field. The fracture characteristics of the notched prisms were criticized in terms of (i) load-CMOD response, (ii) crack progress ahead of the pre-notch, (iii) fracture energy, (iv) ultimate load-bearing capacity, and (v) unstable fracture toughness. Test results revealed that the residual strength, the ultimate load, and the fracture energy of fiber-reinforced geopolymers had a decreasing trend with the increasing recycled steel fiber ratio in the hybrid blend. The reasonable cause of that finding was the heterogeneous distribution of the recycled steel fibers.

Kaynakça

  • Aisheh, Y.I.A., Atrushi, D.S., Akeed, M.H., Qaidi, S., & Tayeh, B.A. (2022). Influence of steel fibers and microsilica on the mechanical properties of ultra-high-performance geopolymer concrete (UHP-GPC). Case Studies in Construction Materials, 17, e01245. https://doi.org/10.1016/j.cscm.2022.e01245
  • Alsaif, A.S., & Abdulrahman S. Albidah, A. (2022). Compressive and flexural characteristics of geopolymer rubberized concrete reinforced with recycled tires steel fibers. Materials Today: Proceedings, International Conference on Advances in Construction Materials and Structures, 65, (pp. 1230–1236). https://doi.org/10.1016/j.matpr.2022.04.182
  • Anvari, M., & Toufigh, V. (2022). Experimental and probabilistic investigation on the durability of geopolymer concrete confined with fiber reinforced polymer. Construction and Building Materials, 334, 127419. https://doi.org/10.1016/j.conbuildmat.2022.127419
  • Başaran, B., Aksoylu, C., Özkılıç, Y.O., Karalar, M., & Hakamy, A., (2023). Shear behaviour of reinforced concrete beams utilizing waste marble powder. Structures, 54, 1090–1100. https://doi.org/10.1016/j.istruc.2023.05.093
  • Blaber, J., Adair, B., & Antoniou, A. (2015). Ncorr: Open-Source 2D Digital Image Correlation Matlab Software. Experimental Mechanics, 55, 1105–1122. https://doi.org/10.1007/s11340-015-0009-1
  • Çelik, A.İ., Tunç, U., Bahrami, A., Karalar, M., Othuman Mydin, M.A., Alomayri, T., & Özkılıç, Y.O., (2023). Use of waste glass powder toward more sustainable geopolymer concrete. Journal of Materials Research and Technology, 24, 8533–8546. https://doi.org/10.1016/j.jmrt.2023.05.094
  • da Silva, A.C.R., Almeida, B.M., Lucas, M.M., Cândido, V.S., da Cruz, K.S.P., Oliveira, M.S., de Azevedo, A.R.G., & Monteiro, S.N. (2022). Fatigue behavior of steel fiber reinforced geopolymer concrete. Case Studies in Construction Materials, 16, e00829. https://doi.org/10.1016/j.cscm.2021.e00829
  • Davidovits, J. (1991). Geopolymers. Journal of Thermal Analysis, 37, 1633–1656. https://doi.org/10.1007/BF01912193
  • Ding, Y., Dai, J.-G., & Shi, C.-J. (2016). Mechanical properties of alkali-activated concrete: A state-of-the-art review. Construction and Building Materials, 127, 68–79. https://doi.org/10.1016/j.conbuildmat.2016.09.121
  • Eskandarinia, M., Esmailzade, M., Hojatkashani, A., Rahmani, A., & Jahandari, S. (2022). Optimized Alkali-Activated Slag-Based Concrete Reinforced with Recycled Tire Steel Fiber. Materials, 15, 6623. https://doi.org/10.3390/ma15196623
  • Farhan, N.A., Sheikh, M.N., & Hadi, M.N.S. (2018). Experimental Investigation on the Effect of Corrosion on the Bond Between Reinforcing Steel Bars and Fibre Reinforced Geopolymer Concrete. Structures, 14, 251–261. https://doi.org/10.1016/j.istruc.2018.03.013
  • Ferreira, L.E.T. (2007). Fracture analysis of a high-strength concrete and a high-strength steel-fiber-reinforced concrete. Mechanics of Composite Materials, 43, 479–486. https://doi.org/10.1007/s11029-007-0045-8
  • Ganesh, A.C., & Muthukannan, M. (2021). Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength. Journal of Cleaner Production, 282, 124543. https://doi.org/10.1016/j.jclepro.2020.124543
  • Gümüş, M., & Arslan, A. (2019). Effect of fiber type and content on the flexural behavior of high strength concrete beams with low reinforcement ratios. Structures, 20, 1–10. https://doi.org/10.1016/j.istruc.2019.02.018
  • Isa, M.N., Pilakoutas, K., Guadagnini, M., & Angelakopoulos, H. (2020). Mechanical performance of affordable and eco-efficient ultra-high performance concrete (UHPC) containing recycled tyre steel fibres. Construction and Building Materials, 255, 119272. https://doi.org/10.1016/j.conbuildmat.2020.119272
  • Jenq, Y., & Shah, S.P. (1985). Two Parameter Fracture Model for Concrete. Journal of Engineering Mechanics, 111, 1227–1241. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:10(1227)
  • Khan, K., Ahmad, W., Amin, M.N., & Nazar, S. (2022). A Scientometric-Analysis-Based Review of the Research Development on Geopolymers. Polymers, 14, 3676. https://doi.org/10.3390/polym14173676
  • Kumar, Y.N., Dean Kumar, B., & Swami, B.L.P. (2022). Mechanical properties of geopolymer concrete reinforced with steel and glass fibers with various mineral admixtures. Materials Today: Proceedings, International Conference on Smart and Sustainable Developments in Materials, Manufacturing and Energy Engineering, 52, (pp. 632–641). https://doi.org/10.1016/j.matpr.2021.10.050
  • Laxmi, G., & Patil, S.G. (2022). Effect of fiber types, shape, aspect ratio and volume fraction on properties of geopolymer concrete – A review. Materials Today: Proceedings, International Conference on Advances in Construction Materials and Structures, 65, (pp. 1086–1094). https://doi.org/10.1016/j.matpr.2022.04.157
  • Li, W., Shumuye, E.D., Shiying, T., Wang, Z., & Zerfu, K. (2022). Eco-friendly fibre reinforced geopolymer concrete: A critical review on the microstructure and long-term durability properties. Case Studies in Construction Materials, 16, e00894. https://doi.org/10.1016/j.cscm.2022.e00894
  • Mastali, M., Dalvand, A., Sattarifard, A.R., & Illikainen, M. (2018). Development of eco-efficient and cost-effective reinforced self-consolidation concretes with hybrid industrial/recycled steel fibers. Construction and Building Materials, 166, 214–226. https://doi.org/10.1016/j.conbuildmat.2018.01.147
  • Meskhi, B., Beskopylny, A.N., Stel’makh, S.A., Shcherban’, E.M., Mailyan, L.R., Shilov, A.A., El’shaeva, D., Shilova, K., Karalar, M., Aksoylu, C., & Özkılıç, Y.O., (2023). Analytical Review of Geopolymer Concrete: Retrospective and Current Issues. Materials, 16, 3792. https://doi.org/10.3390/ma16103792
  • Özkılıç, Y.O., Çelik, A.İ., Tunç, U., Karalar, M., Deifalla, A., Alomayri, T., & Althoey, F., (2023). The use of crushed recycled glass for alkali activated fly ash based geopolymer concrete and prediction of its capacity. Journal of Materials Research and Technology, 24, 8267–8281. https://doi.org/10.1016/j.jmrt.2023.05.079
  • Pająk, M., & Ponikiewski, T. (2013). Flexural behavior of self-compacting concrete reinforced with different types of steel fibers. Construction and Building Materials, 47, 397–408. https://doi.org/10.1016/j.conbuildmat.2013.05.072
  • Qin, X., & Kaewunruen, S. (2022). Environment-friendly recycled steel fibre reinforced concrete. Construction and Building Materials, 327, 126967. https://doi.org/10.1016/j.conbuildmat.2022.126967
  • Ranjbar, N., & Zhang, M. (2020). Fiber-reinforced geopolymer composites: A review. Cement and Concrete Composites, 107, 103498. https://doi.org/10.1016/j.cemconcomp.2019.103498
  • Rashad, A.M. (2020). Effect of steel fibers on geopolymer properties – The best synopsis for civil engineer. Construction and Building Materials, 246, 118534. https://doi.org/10.1016/j.conbuildmat.2020.118534
  • Rashedi, A., Marzouki, R., Raza, A., Ali, K., Olaiya, N.G., & Kalimuthu, M. (2022). Glass FRP-Reinforced Geopolymer Based Columns Comprising Hybrid Fibres: Testing and FEA Modelling. Polymers, 14, 324. https://doi.org/10.3390/polym14020324
  • Ren, R., & Li, L. (2022). Impact of polyethylene fiber reinforcing index on the flexural toughness of geopolymer mortar. Journal of Building Engineering, 57, 104943. https://doi.org/10.1016/j.jobe.2022.104943
  • RILEM-Draft-Recommendation. (1985). Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beames. Materials and Structures, 18(106), 285-290.
  • Sherwani, A.F.H., Younis, K.H., & Arndt, R.W. (2022). Fresh, Mechanical, and Durability Behavior of Fly Ash-Based Self Compacted Geopolymer Concrete: Effect of Slag Content and Various Curing Conditions. Polymers, 14, 3209. https://doi.org/10.3390/polym14153209
  • Simalti, A., & Singh, A.P. (2021). Comparative study on performance of manufactured steel fiber and shredded tire recycled steel fiber reinforced self-consolidating concrete. Construction and Building Materials, 266, 121102. https://doi.org/10.1016/j.conbuildmat.2020.121102
  • Tada, H., Paris, P.C., & Irwin, G.R. (2000). The Stress Analysis of Cracks Handbook. (3rd ed.). ASME Press. https://doi.org/10.1115/1.801535
  • Vijaya Prasad, B., Anand, N., Kiran, T., Jayakumar, G., Sohliya, A., & Ebenezer, S. (2022). Influence of fibers on fresh properties and compressive strength of geo-polymer concrete. Materials Today: Proceedings, International Conference on Innovation and Application in Science and Technology, 57, (pp. 2355–2363). https://doi.org/10.1016/j.matpr.2022.01.426
  • Wang, T., Fan, X., Gao, C., Qu, C., Liu, J., & Yu, G. (2023). The Influence of Fiber on the Mechanical Properties of Geopolymer Concrete: A Review. Polymers, 15, 827. https://doi.org/10.3390/polym15040827
  • Wang, Yi., Chan, C.L., Leong, S.H., & Zhang, M. (2020). Engineering properties of strain hardening geopolymer composites with hybrid polyvinyl alcohol and recycled steel fibres. Construction and Building Materials, 261, 120585. https://doi.org/10.1016/j.conbuildmat.2020.120585
  • Wang, Yijiang., Zheng, T., Zheng, X., Liu, Y., Darkwa, J., & Zhou, G. (2020). Thermo-mechanical and moisture absorption properties of fly ash-based lightweight geopolymer concrete reinforced by polypropylene fibers. Construction and Building Materials, 251, 118960. https://doi.org/10.1016/j.conbuildmat.2020.118960
  • Wang, Z., Bai, E., Huang, H., Liu, C., & Wang, T. (2023). Dynamic mechanical properties of carbon fiber reinforced geopolymer concrete at different ages. Ceramics International, 49, 834–846. https://doi.org/10.1016/j.ceramint.2022.09.056
  • Yolcu, A., Karakoç, M.B., Ekinci, E., Özcan, A., & Sağır, M.A. (2022). Effect of binder dosage and the use of waste rubber fiber on the mechanical and durability performance of geopolymer concrete. Journal Building Engineering, 61, 105162. https://doi.org/10.1016/j.jobe.2022.105162
  • Zada Farhan, K., Azmi Megat Johari, M., & Demirboğa, R. (2022). Evaluation of properties of steel fiber reinforced GGBFS-based geopolymer composites in aggressive environments. Construction and Building Materials, 345, 128339. https://doi.org/10.1016/j.conbuildmat.2022.128339
  • Zhong, H., Poon, E.W., Chen, K., & Zhang, M. (2019). Engineering properties of crumb rubber alkali-activated mortar reinforced with recycled steel fibres. Journal of Cleaner Production, 238, 117950. https://doi.org/10.1016/j.jclepro.2019.117950
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kırılma Mekaniği, Yapı Malzemeleri
Bölüm İnşaat Mühendisliği
Yazarlar

Hakan Bayrak 0000-0001-9441-2214

Muhammed Gümüş 0000-0002-7380-0098

Yayımlanma Tarihi 3 Haziran 2024
Gönderilme Tarihi 12 Ekim 2023
Kabul Tarihi 11 Kasım 2023
Yayımlandığı Sayı Yıl 2024Cilt: 27 Sayı: 2

Kaynak Göster

APA Bayrak, H., & Gümüş, M. (2024). INVESTIGATION OF THE FRACTURE BEHAVIOR OF GEOPOLYMER CONCRETE REINFORCED WITH RECYCLED STEEL AND GLASS FIBERS. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 386-400. https://doi.org/10.17780/ksujes.1375200