Araştırma Makalesi
BibTex RIS Kaynak Göster

ERZURUM KIŞ KOŞULLARINDA FOTOVOLTAİK PANELLERİN PERFORMANSI VE VERİMLİLİĞİ

Yıl 2025, Cilt: 28 Sayı: 2, 732 - 746, 03.06.2025

Öz

Bu çalışmada, Erzurum ili kış ayları şartlarında monokristal ve polikristal tip fotovoltaik güneş panellerinin verimlilikleri ve performans oranları karşılaştırmalı olarak incelenmiştir. Araştırma kapsamında, 250W gücünde monokristal ve polikristal paneller kullanılarak bir deney sistemi kurulmuş ve Aralık, Ocak, Şubat aylarında ölçümler alınmıştır. Panellerin akım, gerilim ve güç çıkışları ölçülerek verim ve performans oranları hesaplanmıştır. Çalışmanın sonuçları, polikristal panellerin teorik veriminin %13,9-18 aralığında, monokristal panellerin veriminin ise %13-17 aralığında elde edilmiştir. Polikristal panellerin performans oranları Aralık 2019, Ocak ve Şubat 2020 için sırasıyla %116, %94 ve %90 olmuştur. Monokristal panellerin performans oranı ise aynı aylar için %110, %91 ve %90 olarak gerçekleşmiştir. Bu sonuçlar, her iki panel türünün de verimlilik açısından benzer performans gösterdiğini, ancak polikristal panellerin biraz daha yüksek bir performans oranına sahip olduğunu göstermektedir. Sonuçlar hem polikristal hem de monokristal panellerin kış aylarında verimlilik açısından benzer performans gösterdiğini, ancak performans oranları açısından da polikristal panel daha yüksek değerler sergilemiştir. Bu bulgular ışığında, Erzurum kış şartları için polikristal panellerin daha uygun olduğu sonucuna varılmıştır.

Kaynakça

  • Alamri, H. R., Abd-Elbary, H., Elnozahy, A., Ziedan, H. A., & Rezk, H. (2020). Experimental Investigation to Improve the Energy Efficiency of Solar PV Panels Using Hydrophobic SiO2 Nanomaterial. Coatings, 10(5), 503. https://doi.org/10.3390/coatings10050503
  • Al-Ghezi, M. K., Ahmed, R. T., & Chaichan, M. T. (2022). The Influence of Temperature and Irradiance on Performance of the photovoltaic panel in the Middle of Iraq. International Journal of Renewable Energy Development, 11(2), 501–513. https://doi.org/10.14710/ijred.2022.43713
  • Aras, M. (2019). Comparison of yield of polycrystalline and monocrystalline type photovoltaic solar panels in Erzurum winter months. Master Thesis. Ataturk University, Erzurum, Türkiye.
  • Baloch, A. A., Bahaidarah, H. M., Gandhidasan, P., & Al-Sulaiman, F. A. (2015). Experimental and numerical performance analysis of a converging channel heat exchanger for PV cooling. Energy conversion and management, 103, 14-27.
  • Başoğlu ME, Çakır B. (2015a). An improved incremental conductance based MPPT approach for PV modules. Turkish Journal of Electrical Engineering and Computer Sciences, 23, 6, 13.
  • Başoğlu ME, Kazdaloğlu A, Erfidan T, Bilgin MZ, Çakır B. (2015b) Performance analyzes of different photovoltaic module technologies under İzmit, Kocaeli climatic conditions. Renewable and Sustainable Energy Reviews, 52, 357-365.
  • Benghanem, M., Alzahrani, A., Khushaim, M., Mellit, A., Haddad, S., Almohamadi, H., & Aida, M. S. (2023). Evaluation of the Performance of Polycrystalline and Monocrystalline PV Technologies in a Hot and Arid Region: An Experimental Analysis. Sustainability, 15(20), 14831. https://doi.org/10.3390/su152014831
  • Brahim, T., & Jemni, A. (2017). Economical assessment and applications of photovoltaic/thermal hybrid solar technology: A review. Solar Energy, 153, 540-561.
  • Canete, C., Carretero, J., & Sidrach-de-Cardona, M. (2014). Energy performance of different photovoltaic module technologies under outdoor conditions. Energy, 65, 295-302.
  • Chandel, S. S., & Agarwal, T. (2017). Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems. Renewable and Sustainable Energy Reviews, 73, 1342-1351.
  • Chauhan, A., Tyagi, V. V., & Anand, S. (2018). Futuristic approach for thermal management in solar PV/thermal systems with possible applications. Energy conversion and management, 163, 314-354.
  • Cuce, E., Cuce, P. M., & Bali, T. (2013). An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters. Applied Energy, 111, 374-382.
  • Farahmand, M. Z., Nazari, M. E., Shamlou, S., & Shafie-khah, M. (2021). The simultaneous impacts of seasonal weather and solar conditions on PV panels electrical characteristics. Energies, 14(4), 845.
  • Fouad, M. M., Shihata, L. A., & Morgan, E. I. (2017). An integrated review of factors influencing the perfomance of photovoltaic panels. Renewable and Sustainable Energy Reviews, 80, 1499-1511.
  • Guenounou, A., Malek, A., & Aillerie, M. (2016). Comparative performance of PV panels of different technologies over one year of exposure: Application to a coastal Mediterranean region of Algeria. Energy Conversion and Management, 114, 356-363.
  • Hossain, R., Kouzani, A. Z., Ahmed, A. J., Saha, N., Mahmud, M. A. P., Debnath, P., & Islam, S. M. K. N. (2020). New Design of Solar Photovoltaic and Thermal Hybrid System for Performance Improvement of Solar Photovoltaic. International Journal of Photoenergy, 1–6.
  • Jeter, S. M. (1981). Maximum conversion efficiency for the utilization of direct solar radiation. Solar energy, 26(3), 231-236.
  • Karafil, A., Ozbay, H., & Kesler, M. (2016). Temperature and solar radiation effects on photovoltaic panel power. Journal of New Results in Science, 5, 48-58.
  • Makrides, G., Zinsser, B., Phinikarides, A., Schubert, M., & Georghiou, G. E. (2012). Temperature and thermal annealing effects on different photovoltaic technologies. Renewable Energy, 43, 407-417.
  • Mirzaei M, & Mohiabadi MZ. (2017). A comparative analysis of long-term field test of monocrystalline and polycrystalline PV power generation in semi-arid climate conditions. Energy for Sustainable Development, 38, 93-101.
  • Nadda, R., Kumar, A., & Maithani, R. (2018). Efficiency improvement of solar photovoltaic/solar air collectors by using impingement jets: A review. Renewable and Sustainable Energy Reviews, 93, 331-353.
  • Ozakin, A. N., Yakut, K., & Khalaji, M. N. (2020). Performance analysis of photovoltaic-heat pump (PV/T) combined systems: A comparative numerical study. Journal of Solar Energy Engineering, 142(2), 021010.
  • Ozden, T., Akinoglu, B. G., & Turan, R. (2017). Long term outdoor performances of three different on-grid PV arrays in central Anatolia–An extended analysis. Renewable energy, 101, 182-195.
  • Öztürk, M., Bozkurt Çırak, B., & Özek, N. (2012a). Life cycle cost analysis of domestic photovoltaic system. Pamukkale University Journal of Engineering Sciences, 18(1): 1-11.
  • Öztürk, M., Özek, N., & Berkama, B. (2012b). Comparison of some existing models for estimating monthly average daily global solar radiation for Isparta. Pamukkale Universitesi Mühendislik Bilimleri Dergisi, 18(1): 13-27.
  • Parthiban, R., & Ponnambalam, P. (2022). An enhancement of the solar panel efficiency: a comprehensive review. Frontiers in Energy Research, 10, 937155.
  • Salimi, H., Mirabdolah Lavasani, A., Ahmadi-Danesh-Ashtiani, H., & Fazaeli, R. (2019). Effect of dust concentration, wind speed, and relative humidity on the performance of photovoltaic panels in Tehran. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(3), 7867–7877
  • Selvaraj, J., Tharmarajah, N., Faeshol Umam, M., Kumar, L., Hasanuzzaman, M., Abd Rahim, N., & Abdulmuhsen Saleh Basuhaib, A. (2023). Comparative Experimental Investigation on Front Cooling for Tempered Glass Photovoltaic Thermal System. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(3), 7245–7261. https://doi.org/10.1080/15567036.2023.2220663
  • Sharma, V., Kumar, A., Sastry, O. S., & Chandel, S. S. (2013). Performance assessment of different solar photovoltaic technologies under similar outdoor conditions. Energy, 58, 511-518.
  • Shukla, A., Kant, K., Sharma, A., & Biwole, P. H. (2017). Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review. Solar Energy Materials and Solar Cells, 160, 275-286.
  • Sulukan, E. (2020). Techno-economic and environmental analysis of a photovoltaic system in Istanbul. Pamukkale University Journal of Engineering Sciences, 26(1), 127-132.
  • Taşçıoğlu, A., Taşkın, O., & Vardar, A. (2016). A power case study for monocrystalline and polycrystalline solar panels in Bursa City, Turkey. International Journal of Photoenergy, 2016(1), 7324138.
  • Tossa, A. K., Soro, Y. M., Thiaw, L., Azoumah, Y., Sicot, L., Yamegueu, D., Lishou, C., Coulibaly, Y., Razongles, G. (2016). Energy performance of different silicon photovoltaic technologies under hot and harsh climate. Energy, 103, 261-270.
  • Weather Spark. Climate and Average Weather Year-Round in Erzurum. https://weatherspark.com/y/102045/Average-Weather-in-Erzurum-Turkey-Year-Round (10.08.2023)
  • Weather Spark. Climate and Average Weather Year-Round in Erzurum. https://weatherspark.com/y/102045/Average-Weather-in-Erzurum-Turkey-Year-Round#Figures-SolarDay (28.02.2025)
  • Yesildal, F., Ozakin, A. N., & Yakut, K. (2022). Optimization of operational parameters for a photovoltaic panel cooled by spray cooling. Engineering Science and Technology, an International Journal, 25, 100983.

PERFORMANCE AND EFFICIENCY OF PHOTOVOLTAIC PANELS IN ERZURUM WINTER CONDITIONS

Yıl 2025, Cilt: 28 Sayı: 2, 732 - 746, 03.06.2025

Öz

In this study, the efficiency and performance ratios of monocrystalline and polycrystalline type Photovoltaic (PV) solar panels were investigated comparatively under winter conditions in Erzurum province. Within the scope of the research, an experimental system was established using 250W monocrystalline and polycrystalline panels, and measurements were taken in December, January, and February. Current, voltage, and power outputs of the panels were measured, and efficiency and performance ratios were calculated. The results of the study show that the theoretical efficiency of polycrystalline panels is in the range of 13.9-18%, while the efficiency of monocrystalline panels is in the range of 13-17%. The performance ratios of polycrystalline panels were 116%, 94%, and 90% for December 2019, January, and February 2020, respectively. The performance rates of monocrystalline panels were 110%, 91%, and 90% for the same months. These results show that both panel types perform similarly in terms of efficiency, but polycrystalline panels have a slightly higher performance ratio. The results show that both polycrystalline and monocrystalline panels show similar performance in terms of efficiency in winter months, but the polycrystalline panel exhibited higher values in terms of performance ratios. In light of these findings, it is concluded that polycrystalline panels are more suitable for Erzurum winter conditions.

Kaynakça

  • Alamri, H. R., Abd-Elbary, H., Elnozahy, A., Ziedan, H. A., & Rezk, H. (2020). Experimental Investigation to Improve the Energy Efficiency of Solar PV Panels Using Hydrophobic SiO2 Nanomaterial. Coatings, 10(5), 503. https://doi.org/10.3390/coatings10050503
  • Al-Ghezi, M. K., Ahmed, R. T., & Chaichan, M. T. (2022). The Influence of Temperature and Irradiance on Performance of the photovoltaic panel in the Middle of Iraq. International Journal of Renewable Energy Development, 11(2), 501–513. https://doi.org/10.14710/ijred.2022.43713
  • Aras, M. (2019). Comparison of yield of polycrystalline and monocrystalline type photovoltaic solar panels in Erzurum winter months. Master Thesis. Ataturk University, Erzurum, Türkiye.
  • Baloch, A. A., Bahaidarah, H. M., Gandhidasan, P., & Al-Sulaiman, F. A. (2015). Experimental and numerical performance analysis of a converging channel heat exchanger for PV cooling. Energy conversion and management, 103, 14-27.
  • Başoğlu ME, Çakır B. (2015a). An improved incremental conductance based MPPT approach for PV modules. Turkish Journal of Electrical Engineering and Computer Sciences, 23, 6, 13.
  • Başoğlu ME, Kazdaloğlu A, Erfidan T, Bilgin MZ, Çakır B. (2015b) Performance analyzes of different photovoltaic module technologies under İzmit, Kocaeli climatic conditions. Renewable and Sustainable Energy Reviews, 52, 357-365.
  • Benghanem, M., Alzahrani, A., Khushaim, M., Mellit, A., Haddad, S., Almohamadi, H., & Aida, M. S. (2023). Evaluation of the Performance of Polycrystalline and Monocrystalline PV Technologies in a Hot and Arid Region: An Experimental Analysis. Sustainability, 15(20), 14831. https://doi.org/10.3390/su152014831
  • Brahim, T., & Jemni, A. (2017). Economical assessment and applications of photovoltaic/thermal hybrid solar technology: A review. Solar Energy, 153, 540-561.
  • Canete, C., Carretero, J., & Sidrach-de-Cardona, M. (2014). Energy performance of different photovoltaic module technologies under outdoor conditions. Energy, 65, 295-302.
  • Chandel, S. S., & Agarwal, T. (2017). Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems. Renewable and Sustainable Energy Reviews, 73, 1342-1351.
  • Chauhan, A., Tyagi, V. V., & Anand, S. (2018). Futuristic approach for thermal management in solar PV/thermal systems with possible applications. Energy conversion and management, 163, 314-354.
  • Cuce, E., Cuce, P. M., & Bali, T. (2013). An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters. Applied Energy, 111, 374-382.
  • Farahmand, M. Z., Nazari, M. E., Shamlou, S., & Shafie-khah, M. (2021). The simultaneous impacts of seasonal weather and solar conditions on PV panels electrical characteristics. Energies, 14(4), 845.
  • Fouad, M. M., Shihata, L. A., & Morgan, E. I. (2017). An integrated review of factors influencing the perfomance of photovoltaic panels. Renewable and Sustainable Energy Reviews, 80, 1499-1511.
  • Guenounou, A., Malek, A., & Aillerie, M. (2016). Comparative performance of PV panels of different technologies over one year of exposure: Application to a coastal Mediterranean region of Algeria. Energy Conversion and Management, 114, 356-363.
  • Hossain, R., Kouzani, A. Z., Ahmed, A. J., Saha, N., Mahmud, M. A. P., Debnath, P., & Islam, S. M. K. N. (2020). New Design of Solar Photovoltaic and Thermal Hybrid System for Performance Improvement of Solar Photovoltaic. International Journal of Photoenergy, 1–6.
  • Jeter, S. M. (1981). Maximum conversion efficiency for the utilization of direct solar radiation. Solar energy, 26(3), 231-236.
  • Karafil, A., Ozbay, H., & Kesler, M. (2016). Temperature and solar radiation effects on photovoltaic panel power. Journal of New Results in Science, 5, 48-58.
  • Makrides, G., Zinsser, B., Phinikarides, A., Schubert, M., & Georghiou, G. E. (2012). Temperature and thermal annealing effects on different photovoltaic technologies. Renewable Energy, 43, 407-417.
  • Mirzaei M, & Mohiabadi MZ. (2017). A comparative analysis of long-term field test of monocrystalline and polycrystalline PV power generation in semi-arid climate conditions. Energy for Sustainable Development, 38, 93-101.
  • Nadda, R., Kumar, A., & Maithani, R. (2018). Efficiency improvement of solar photovoltaic/solar air collectors by using impingement jets: A review. Renewable and Sustainable Energy Reviews, 93, 331-353.
  • Ozakin, A. N., Yakut, K., & Khalaji, M. N. (2020). Performance analysis of photovoltaic-heat pump (PV/T) combined systems: A comparative numerical study. Journal of Solar Energy Engineering, 142(2), 021010.
  • Ozden, T., Akinoglu, B. G., & Turan, R. (2017). Long term outdoor performances of three different on-grid PV arrays in central Anatolia–An extended analysis. Renewable energy, 101, 182-195.
  • Öztürk, M., Bozkurt Çırak, B., & Özek, N. (2012a). Life cycle cost analysis of domestic photovoltaic system. Pamukkale University Journal of Engineering Sciences, 18(1): 1-11.
  • Öztürk, M., Özek, N., & Berkama, B. (2012b). Comparison of some existing models for estimating monthly average daily global solar radiation for Isparta. Pamukkale Universitesi Mühendislik Bilimleri Dergisi, 18(1): 13-27.
  • Parthiban, R., & Ponnambalam, P. (2022). An enhancement of the solar panel efficiency: a comprehensive review. Frontiers in Energy Research, 10, 937155.
  • Salimi, H., Mirabdolah Lavasani, A., Ahmadi-Danesh-Ashtiani, H., & Fazaeli, R. (2019). Effect of dust concentration, wind speed, and relative humidity on the performance of photovoltaic panels in Tehran. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(3), 7867–7877
  • Selvaraj, J., Tharmarajah, N., Faeshol Umam, M., Kumar, L., Hasanuzzaman, M., Abd Rahim, N., & Abdulmuhsen Saleh Basuhaib, A. (2023). Comparative Experimental Investigation on Front Cooling for Tempered Glass Photovoltaic Thermal System. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(3), 7245–7261. https://doi.org/10.1080/15567036.2023.2220663
  • Sharma, V., Kumar, A., Sastry, O. S., & Chandel, S. S. (2013). Performance assessment of different solar photovoltaic technologies under similar outdoor conditions. Energy, 58, 511-518.
  • Shukla, A., Kant, K., Sharma, A., & Biwole, P. H. (2017). Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review. Solar Energy Materials and Solar Cells, 160, 275-286.
  • Sulukan, E. (2020). Techno-economic and environmental analysis of a photovoltaic system in Istanbul. Pamukkale University Journal of Engineering Sciences, 26(1), 127-132.
  • Taşçıoğlu, A., Taşkın, O., & Vardar, A. (2016). A power case study for monocrystalline and polycrystalline solar panels in Bursa City, Turkey. International Journal of Photoenergy, 2016(1), 7324138.
  • Tossa, A. K., Soro, Y. M., Thiaw, L., Azoumah, Y., Sicot, L., Yamegueu, D., Lishou, C., Coulibaly, Y., Razongles, G. (2016). Energy performance of different silicon photovoltaic technologies under hot and harsh climate. Energy, 103, 261-270.
  • Weather Spark. Climate and Average Weather Year-Round in Erzurum. https://weatherspark.com/y/102045/Average-Weather-in-Erzurum-Turkey-Year-Round (10.08.2023)
  • Weather Spark. Climate and Average Weather Year-Round in Erzurum. https://weatherspark.com/y/102045/Average-Weather-in-Erzurum-Turkey-Year-Round#Figures-SolarDay (28.02.2025)
  • Yesildal, F., Ozakin, A. N., & Yakut, K. (2022). Optimization of operational parameters for a photovoltaic panel cooled by spray cooling. Engineering Science and Technology, an International Journal, 25, 100983.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç), Makine Mühendisliği (Diğer)
Bölüm Makine Mühendisliği
Yazarlar

Şendoğan Karagöz 0000-0003-2618-8788

Meryem Aras 0000-0003-4971-2917

Orhan Yıldırım 0000-0001-8780-1297

Fadime Şimşek 0000-0002-1440-7480

Ömer Çomaklı 0000-0003-4631-7989

Yayımlanma Tarihi 3 Haziran 2025
Gönderilme Tarihi 3 Ocak 2025
Kabul Tarihi 22 Nisan 2025
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 2

Kaynak Göster

APA Karagöz, Ş., Aras, M., Yıldırım, O., Şimşek, F., vd. (2025). PERFORMANCE AND EFFICIENCY OF PHOTOVOLTAIC PANELS IN ERZURUM WINTER CONDITIONS. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(2), 732-746.