Araştırma Makalesi
BibTex RIS Kaynak Göster

FARKLI YÜZEY TÜRLERİNE SAHİP ÜRÜNLERİN HATA TESPİTİNDE EVRİŞİMSEL SİNİR AĞI MİMARİLERİNİN ETKİSİ

Yıl 2025, Cilt: 28 Sayı: 4, 1673 - 1687, 03.12.2025

Öz

Üretim sistemlerinde üretilen ürünlerin hatalarının hızlı ve doğru bir şekilde tespit edilmesi maliyet, kalite ve müşteri memnuniyeti açısından önem teşkil etmektedir. Ürün yüzey hataları üretim hatalarının büyük bir kısmını kapsamaktadır. Yüzey hatalarının tespiti derin öğrenme yöntemleri ile başarılı bir şekilde gerçekleştirilebilmektedir. Bu çalışmada derin öğrenme yöntemlerinden Evrişimsel Sinir Ağı mimarileri kullanılmıştır. Farklı türdeki yüzey hataları üzerinde sınıflandırma işlemi gerçekleştirerek, değişen endüstriyel süreçlere uyum sağlamayı kolaylaştırmak ve farklı mimarilerin farklı yüzey türleri üzerindeki etkilerinin incelenmesi amaçlanmıştır. Metal, Ahşap, Gıda ve Kumaş türlerine sahip dört veri kümesi GoogleNet, SqueezeNet ve VGG 19 olmak üzere üç farklı CNN mimarisi ile sınıflandırılmış, başarıları incelenmiştir. Sınıflandırma işleminde validasyon doğruluk değeri göz önünde bulundurulmuştur. Elde edilen sonuçlara göre siyah-beyaz tonlamaya sahip Metal ve Kumaş veri kümelerinde GoogleNet mimarisi sırasıyla %99,89 ve %96,86 ile diğer mimarilerden daha yüksek sınıflandırma başarısı ortaya koyarken, renkli tonlamaya sahip veri kümeleri olan Ahşap ve Gıda veri kümelerinde VGG 19 mimarisi sırasıyla %94,39 ve %99,96 ile daha yüksek sınıflandırma başarısı göstermiştir. Yapılan çalışma sonucunda Ahşap ve Kumaş veri kümeleri için elde edilen sınıflandırma başarıları literatürdeki çalışmalara göre ortalamanın üzerinde elde edilirken, Metal ve Gıda veri kümeleri için sınıflandırma başarıları literatürdeki çalışmalardan daha yüksek olarak elde edilmiştir.

Kaynakça

  • Abbes, W., Elleuch, J. F., & Sellami, D. (2024). Defect-Net: A new CNN model for steel surface defect classification. Paper presented at the 2024 IEEE 12th International Symposium on Signal, Image, Video and Communications (ISIVC), https://doi.org/10.1109/ISIVC61350.2024.10577945
  • Ahuja, S. K., & Shukla, M. K. (2018). A survey of computer vision based corrosion detection approaches. Information and Communication Technology for Intelligent Systems (ICTIS 2017)-Volume 2 2, 55-63. https://doi.org/10.1007/978-3-319-63645-0_6
  • Amin, U., Shahzad, M. I., Shahzad, A., Shahzad, M., Khan, U., & Mahmood, Z. (2023). Automatic fruits freshness classification using CNN and transfer learning. Applied Sciences, 13(14), 8087. https://doi.org/10.3390/app13148087
  • Anvar, A., & Cho, Y. I. (2020). Automatic metallic surface defect detection using shuffledefectnet. Journal of The Korea Society of Computer and Information, 25(3), 19-26.
  • Ashrafi, S., Teymouri, S., Etaati, S., Khoramdel, J., Borhani, Y., & Najafi, E. (2025). Steel surface defect detection and segmentation using deep neural networks. Results in Engineering, 25, 103972. https://doi.org/10.1016/j.rineng.2025.103972
  • Austin, M., Delgoshaei, P., Coelho, M., & Heidarinejad, M. (2020). Architecting smart city digital twins: Combined semantic model and machine learning approach. Journal of Management in Engineering, 36(4), 04020026. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000774
  • Beljadid, A., Tannouche, A., & Balouki, A. (2023). Fabric defect classification using transfer learning and deep learning. IAES International Journal of Artificial Intelligence (IJ-AI), 2252(8938), 1379. https://doi.org/10.11591/ijai.v12.i3.pp1378-1385
  • Bengio, Y. (2009). Learning Deep Architectures for AI. Foundations and trends in Machine Learning, 2(1), 1-127. http://dx.doi.org/10.1561/2200000006
  • Calvi, A. (2020). Wood Classifier - Version 0.1a of the 10/09/2020. https://github.com/ArthurCalvi/Classifieur-Bois (Erişim Tarihi: 2024, Aralık)
  • Cao, W., Liu, Q., & He, Z. (2020). Review of pavement defect detection methods. Ieee Access, 8, 14531-14544. https://doi.org/10.1109/ACCESS.2020.2966881
  • Chen, Z., Huang, X., Kang, R., Huang, J., & Peng, J. (2025). Aluminum Product Surface Defect Detection Method Based on Improved CenterNet. IEEJ Transactions on Electrical and Electronic Engineering, 20(3), 415-421. https://doi.org/10.1002/tee.24218
  • Czimmermann, T., Ciuti, G., Milazzo, M., Chiurazzi, M., Roccella, S., Oddo, C. M., & Dario, P. (2020). Visual-based defect detection and classification approaches for industrial applications—a survey. Sensors, 20(5), 1459. https://doi.org/10.3390/s20051459
  • Dabhi, R. (2020). Casting Product Image Data for Quality Inspection. https://www.kaggle.com/datasets/ravirajsinh45/real-life-industrial-dataset-of-casting-product/data (Erişim Tarihi: 2024, Aralık)
  • Fouzia, M., & Nirmala, K. (2010). A literature survey on various methods used for metal defects detection using image segmentation. Evaluation, 5(10), 8.
  • Fu, G., Le, W., Zhang, Z., Li, J., Zhu, Q., Niu, F., . . . Shen, Y. (2023). A surface defect inspection model via rich feature extraction and residual-based progressive integration CNN. Machines, 11(1), 124. https://doi.org/10.3390/machines11010124
  • Habibpour, M., Gharoun, H., Tajally, A., Shamsi, A., Asgharnezhad, H., Khosravi, A., & Nahavandi, S. (2021). An uncertainty-aware deep learning framework for defect detection in casting products. arXiv preprint arXiv:2107.11643. https://doi.org/10.48550/arXiv.2107.11643
  • Hafemann, L. G., Oliveira, L. S., & Cavalin, P. (2014). Forest species recognition using deep convolutional neural networks. Paper presented at the 2014 22nd international conference on pattern recognition, https://doi.org/10.1109/ICPR.2014.199
  • Hoang, D.-T., & Kang, H.-J. (2019). A survey on deep learning based bearing fault diagnosis. Neurocomputing, 335, 327-335. https://doi.org/10.1016/j.neucom.2018.06.078
  • Hu, B., & Wang, J. (2020). Detection of PCB surface defects with improved faster-RCNN and feature pyramid network. Ieee Access, 8, 108335-108345.
  • Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360. https://doi.org/10.48550/arXiv.1602.07360
  • Jing, J. F., Ma, H., & Zhang, H. H. (2019). Automatic fabric defect detection using a deep convolutional neural network. Coloration Technology, 135(3), 213-223. https://doi.org/10.1111/cote.12394
  • Kalluri, S. R. (2018). Fresh and Rotten Fruits for Classification. https://www.kaggle.com/datasets/sriramr/fruits-fresh-and-rotten-for-classification (Erişim Tarihi: 2024, Kasım)
  • Kumar, A. (2008). Computer-vision-based fabric defect detection: A survey. IEEE transactions on industrial electronics, 55(1), 348-363. https://doi.org/10.1109/TIE.1930.896476
  • Lee, D., Kang, Y.-i., Park, C., & Won, S. (2009). Defect detection algorithm in steel billets using morphological top-hat filter. IFAC Proceedings Volumes, 42(23), 209-212. https://doi.org/10.3182/20091014-3-CL-4011.00038
  • Li, S., Yang, J., Wang, Z., Zhu, S., & Yang, G. (2020). Review of development and application of defect detection technology. Acta Automatica Sinica, 46(11), 2319-2336.
  • Liang, Q., Zhu, W., Sun, W., Yu, Z., Wang, Y., & Zhang, D. (2019). In-line inspection solution for codes on complex backgrounds for the plastic container industry. Measurement, 148, 106965. https://doi.org/10.1016/j.measurement.2019.106965
  • Liu, Y., Xu, K., & Xu, J. (2019). An improved MB-LBP defect recognition approach for the surface of steel plates. Applied Sciences, 9(20), 4222. https://doi.org/10.3390/app9204222
  • Masters, D., & Luschi, C. (2018). Revisiting small batch training for deep neural networks. arXiv preprint arXiv:1804.07612. https://doi.org/10.48550/arXiv.1804.07612
  • Park, J.-K., Kwon, B.-K., Park, J.-H., & Kang, D.-J. (2016). Machine learning-based imaging system for surface defect inspection. International Journal of Precision Engineering and Manufacturing-Green Technology, 3, 303-310. https://doi.org/10.1007/s40684-016-0039-x
  • Parlak, I. E., & Emel, E. (2023). Deep learning-based detection of aluminum casting defects and their types. Engineering Applications of Artificial Intelligence, 118, 105636. https://doi.org/10.1016/j.engappai.2022.105636
  • Pathak, R., & Makwana, H. (2021). Classification of fruits using convolutional neural network and transfer learning models. Journal of Management Information and Decision Sciences, 24, 1-12.
  • Putri, A. P., Rachmat, H., & Atmaja, D. S. E. (2017). Design of automation system for ceramic surface quality control using fuzzy logic method at Balai Besar Keramik (BBK). Paper presented at the MATEC Web of Conferences, https://doi.org/10.1051/matecconf/201713500053
  • Rasheed, A., Zafar, B., Rasheed, A., Ali, N., Sajid, M., Dar, S. H., . . . Mahmood, M. T. (2020). Fabric defect detection using computer vision techniques: a comprehensive review. Mathematical Problems in Engineering, 2020(1), 8189403. https://doi.org/10.1155/2020/8189403
  • Ren, Z. (2024). Surface Defect Detection and Classification Methods for Aluminum Profiles Based on CNN. Paper presented at the 2024 17th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), https://doi.org/10.1109/CISP-BMEI64163.2024.10906210
  • Schulz-Mirbach, H. (1996). Tilda-ein referenzdatensatz zur evaluierung von sichtprüfungsverfahren für textiloberflächen. Interner Bericht, 4, 96.
  • Shilong, M., Qiqige, W., & Xiaoping, L. (2016). Deep learning with big data: state of the art and development. CAAI Transaction on Intelligent Systems, 11, 728-742.
  • Simonyan, K., & Zisserman, A. (2014). Very deep convnets for large-scale image recognition. Computing Research Repository.
  • Smith, L. N., & Topin, N. (2019). Super-convergence: Very fast training of neural networks using large learning rates. Paper presented at the Artificial intelligence and machine learning for multi-domain operations applications, https://doi.org/10.1117/12.2520589
  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabinovich, A. (2015). Going deeper with convolutions. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
  • Tao, X., Hou, W., & Xu, D. (2021). A survey of surface defect detection methods based on deep learning. Acta Automatica Sinica, 47(5), 1017-1034.
  • Tao, X., Zhang, D., Wang, Z., Liu, X., Zhang, H., & Xu, D. (2018). Detection of power line insulator defects using aerial images analyzed with convolutional neural networks. IEEE transactions on systems, man, and cybernetics: systems, 50(4), 1486-1498. https://doi.org/10.1109/TSMC.2018.2871750
  • Tata, R. K., & KBV, B. R. (2025). Hybrid CNN-LSTM Architecture for Automated Defect Detection in Industrial Surface Inspection. MJARET, 5(1), 11-16.
  • Ünal, E., İnanç, H., & Nebati, E. E. (2024). Bir Ambalaj İşletmesinde SMED ve 5S Uygulaması. İşletme Bilimi Dergisi, 12(2), 196-214. https://doi.org/10.22139/jobs.1501171
  • Wang, T., Chen, Y., Qiao, M., & Snoussi, H. (2018). A fast and robust convolutional neural network-based defect detection model in product quality control. The International Journal of Advanced Manufacturing Technology, 94, 3465-3471. https://doi.org/10.1007/s00170-017-0882-0
  • Xu, L., Lv, S., Deng, Y., & Li, X. (2020). A weakly supervised surface defect detection based on convolutional neural network. Ieee Access, 8, 42285-42296. https://doi.org/10.1109/ACCESS.2020.2977821
  • Yang, J., Li, S., Wang, Z., Dong, H., Wang, J., & Tang, S. (2020). Using deep learning to detect defects in manufacturing: a comprehensive survey and current challenges. Materials, 13(24), 5755. https://doi.org/10.3390/ma13245755

EFFECT OF CONVOLUTIONAL NEURAL NETWORK ARCHITECTURES ON DEFECT DETECTION OF PRODUCTS WITH DIFFERENT SURFACE TYPES

Yıl 2025, Cilt: 28 Sayı: 4, 1673 - 1687, 03.12.2025

Öz

Fast and accurate detection of product defects in manufacturing systems is crucial for cost, quality and customer satisfaction. Surface defects comprise a large portion of production defects and can be successfully detected using deep learning methods. This study employed Convolutional Neural Network (CNN) architectures to classify different types of surface defects and examine the effects of different architectures on various surface types. Four datasets (Metal, Wood, Food, and Fabric) were classified using three CNN architectures: GoogleNet, SqueezeNet, and VGG 19. Validation accuracy was considered in the classification process. According to the results, for the grayscale Metal and Fabric datasets, the GoogleNet architecture achieved higher classification accuracies than the other architectures, with 99,89% and 96,86%, respectively. In contrast, for the color datasets, namely Wood and Food, the VGG19 architecture demonstrated higher classification performance, achieving 94,39% and 99,96%, respectively. As a result of this study, the classification accuracies obtained for the Wood and Fabric datasets were above the average reported in the literature, while the accuracies for the Metal and Food datasets surpassed those reported in previous studies.

Kaynakça

  • Abbes, W., Elleuch, J. F., & Sellami, D. (2024). Defect-Net: A new CNN model for steel surface defect classification. Paper presented at the 2024 IEEE 12th International Symposium on Signal, Image, Video and Communications (ISIVC), https://doi.org/10.1109/ISIVC61350.2024.10577945
  • Ahuja, S. K., & Shukla, M. K. (2018). A survey of computer vision based corrosion detection approaches. Information and Communication Technology for Intelligent Systems (ICTIS 2017)-Volume 2 2, 55-63. https://doi.org/10.1007/978-3-319-63645-0_6
  • Amin, U., Shahzad, M. I., Shahzad, A., Shahzad, M., Khan, U., & Mahmood, Z. (2023). Automatic fruits freshness classification using CNN and transfer learning. Applied Sciences, 13(14), 8087. https://doi.org/10.3390/app13148087
  • Anvar, A., & Cho, Y. I. (2020). Automatic metallic surface defect detection using shuffledefectnet. Journal of The Korea Society of Computer and Information, 25(3), 19-26.
  • Ashrafi, S., Teymouri, S., Etaati, S., Khoramdel, J., Borhani, Y., & Najafi, E. (2025). Steel surface defect detection and segmentation using deep neural networks. Results in Engineering, 25, 103972. https://doi.org/10.1016/j.rineng.2025.103972
  • Austin, M., Delgoshaei, P., Coelho, M., & Heidarinejad, M. (2020). Architecting smart city digital twins: Combined semantic model and machine learning approach. Journal of Management in Engineering, 36(4), 04020026. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000774
  • Beljadid, A., Tannouche, A., & Balouki, A. (2023). Fabric defect classification using transfer learning and deep learning. IAES International Journal of Artificial Intelligence (IJ-AI), 2252(8938), 1379. https://doi.org/10.11591/ijai.v12.i3.pp1378-1385
  • Bengio, Y. (2009). Learning Deep Architectures for AI. Foundations and trends in Machine Learning, 2(1), 1-127. http://dx.doi.org/10.1561/2200000006
  • Calvi, A. (2020). Wood Classifier - Version 0.1a of the 10/09/2020. https://github.com/ArthurCalvi/Classifieur-Bois (Erişim Tarihi: 2024, Aralık)
  • Cao, W., Liu, Q., & He, Z. (2020). Review of pavement defect detection methods. Ieee Access, 8, 14531-14544. https://doi.org/10.1109/ACCESS.2020.2966881
  • Chen, Z., Huang, X., Kang, R., Huang, J., & Peng, J. (2025). Aluminum Product Surface Defect Detection Method Based on Improved CenterNet. IEEJ Transactions on Electrical and Electronic Engineering, 20(3), 415-421. https://doi.org/10.1002/tee.24218
  • Czimmermann, T., Ciuti, G., Milazzo, M., Chiurazzi, M., Roccella, S., Oddo, C. M., & Dario, P. (2020). Visual-based defect detection and classification approaches for industrial applications—a survey. Sensors, 20(5), 1459. https://doi.org/10.3390/s20051459
  • Dabhi, R. (2020). Casting Product Image Data for Quality Inspection. https://www.kaggle.com/datasets/ravirajsinh45/real-life-industrial-dataset-of-casting-product/data (Erişim Tarihi: 2024, Aralık)
  • Fouzia, M., & Nirmala, K. (2010). A literature survey on various methods used for metal defects detection using image segmentation. Evaluation, 5(10), 8.
  • Fu, G., Le, W., Zhang, Z., Li, J., Zhu, Q., Niu, F., . . . Shen, Y. (2023). A surface defect inspection model via rich feature extraction and residual-based progressive integration CNN. Machines, 11(1), 124. https://doi.org/10.3390/machines11010124
  • Habibpour, M., Gharoun, H., Tajally, A., Shamsi, A., Asgharnezhad, H., Khosravi, A., & Nahavandi, S. (2021). An uncertainty-aware deep learning framework for defect detection in casting products. arXiv preprint arXiv:2107.11643. https://doi.org/10.48550/arXiv.2107.11643
  • Hafemann, L. G., Oliveira, L. S., & Cavalin, P. (2014). Forest species recognition using deep convolutional neural networks. Paper presented at the 2014 22nd international conference on pattern recognition, https://doi.org/10.1109/ICPR.2014.199
  • Hoang, D.-T., & Kang, H.-J. (2019). A survey on deep learning based bearing fault diagnosis. Neurocomputing, 335, 327-335. https://doi.org/10.1016/j.neucom.2018.06.078
  • Hu, B., & Wang, J. (2020). Detection of PCB surface defects with improved faster-RCNN and feature pyramid network. Ieee Access, 8, 108335-108345.
  • Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., & Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360. https://doi.org/10.48550/arXiv.1602.07360
  • Jing, J. F., Ma, H., & Zhang, H. H. (2019). Automatic fabric defect detection using a deep convolutional neural network. Coloration Technology, 135(3), 213-223. https://doi.org/10.1111/cote.12394
  • Kalluri, S. R. (2018). Fresh and Rotten Fruits for Classification. https://www.kaggle.com/datasets/sriramr/fruits-fresh-and-rotten-for-classification (Erişim Tarihi: 2024, Kasım)
  • Kumar, A. (2008). Computer-vision-based fabric defect detection: A survey. IEEE transactions on industrial electronics, 55(1), 348-363. https://doi.org/10.1109/TIE.1930.896476
  • Lee, D., Kang, Y.-i., Park, C., & Won, S. (2009). Defect detection algorithm in steel billets using morphological top-hat filter. IFAC Proceedings Volumes, 42(23), 209-212. https://doi.org/10.3182/20091014-3-CL-4011.00038
  • Li, S., Yang, J., Wang, Z., Zhu, S., & Yang, G. (2020). Review of development and application of defect detection technology. Acta Automatica Sinica, 46(11), 2319-2336.
  • Liang, Q., Zhu, W., Sun, W., Yu, Z., Wang, Y., & Zhang, D. (2019). In-line inspection solution for codes on complex backgrounds for the plastic container industry. Measurement, 148, 106965. https://doi.org/10.1016/j.measurement.2019.106965
  • Liu, Y., Xu, K., & Xu, J. (2019). An improved MB-LBP defect recognition approach for the surface of steel plates. Applied Sciences, 9(20), 4222. https://doi.org/10.3390/app9204222
  • Masters, D., & Luschi, C. (2018). Revisiting small batch training for deep neural networks. arXiv preprint arXiv:1804.07612. https://doi.org/10.48550/arXiv.1804.07612
  • Park, J.-K., Kwon, B.-K., Park, J.-H., & Kang, D.-J. (2016). Machine learning-based imaging system for surface defect inspection. International Journal of Precision Engineering and Manufacturing-Green Technology, 3, 303-310. https://doi.org/10.1007/s40684-016-0039-x
  • Parlak, I. E., & Emel, E. (2023). Deep learning-based detection of aluminum casting defects and their types. Engineering Applications of Artificial Intelligence, 118, 105636. https://doi.org/10.1016/j.engappai.2022.105636
  • Pathak, R., & Makwana, H. (2021). Classification of fruits using convolutional neural network and transfer learning models. Journal of Management Information and Decision Sciences, 24, 1-12.
  • Putri, A. P., Rachmat, H., & Atmaja, D. S. E. (2017). Design of automation system for ceramic surface quality control using fuzzy logic method at Balai Besar Keramik (BBK). Paper presented at the MATEC Web of Conferences, https://doi.org/10.1051/matecconf/201713500053
  • Rasheed, A., Zafar, B., Rasheed, A., Ali, N., Sajid, M., Dar, S. H., . . . Mahmood, M. T. (2020). Fabric defect detection using computer vision techniques: a comprehensive review. Mathematical Problems in Engineering, 2020(1), 8189403. https://doi.org/10.1155/2020/8189403
  • Ren, Z. (2024). Surface Defect Detection and Classification Methods for Aluminum Profiles Based on CNN. Paper presented at the 2024 17th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), https://doi.org/10.1109/CISP-BMEI64163.2024.10906210
  • Schulz-Mirbach, H. (1996). Tilda-ein referenzdatensatz zur evaluierung von sichtprüfungsverfahren für textiloberflächen. Interner Bericht, 4, 96.
  • Shilong, M., Qiqige, W., & Xiaoping, L. (2016). Deep learning with big data: state of the art and development. CAAI Transaction on Intelligent Systems, 11, 728-742.
  • Simonyan, K., & Zisserman, A. (2014). Very deep convnets for large-scale image recognition. Computing Research Repository.
  • Smith, L. N., & Topin, N. (2019). Super-convergence: Very fast training of neural networks using large learning rates. Paper presented at the Artificial intelligence and machine learning for multi-domain operations applications, https://doi.org/10.1117/12.2520589
  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabinovich, A. (2015). Going deeper with convolutions. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
  • Tao, X., Hou, W., & Xu, D. (2021). A survey of surface defect detection methods based on deep learning. Acta Automatica Sinica, 47(5), 1017-1034.
  • Tao, X., Zhang, D., Wang, Z., Liu, X., Zhang, H., & Xu, D. (2018). Detection of power line insulator defects using aerial images analyzed with convolutional neural networks. IEEE transactions on systems, man, and cybernetics: systems, 50(4), 1486-1498. https://doi.org/10.1109/TSMC.2018.2871750
  • Tata, R. K., & KBV, B. R. (2025). Hybrid CNN-LSTM Architecture for Automated Defect Detection in Industrial Surface Inspection. MJARET, 5(1), 11-16.
  • Ünal, E., İnanç, H., & Nebati, E. E. (2024). Bir Ambalaj İşletmesinde SMED ve 5S Uygulaması. İşletme Bilimi Dergisi, 12(2), 196-214. https://doi.org/10.22139/jobs.1501171
  • Wang, T., Chen, Y., Qiao, M., & Snoussi, H. (2018). A fast and robust convolutional neural network-based defect detection model in product quality control. The International Journal of Advanced Manufacturing Technology, 94, 3465-3471. https://doi.org/10.1007/s00170-017-0882-0
  • Xu, L., Lv, S., Deng, Y., & Li, X. (2020). A weakly supervised surface defect detection based on convolutional neural network. Ieee Access, 8, 42285-42296. https://doi.org/10.1109/ACCESS.2020.2977821
  • Yang, J., Li, S., Wang, Z., Dong, H., Wang, J., & Tang, S. (2020). Using deep learning to detect defects in manufacturing: a comprehensive survey and current challenges. Materials, 13(24), 5755. https://doi.org/10.3390/ma13245755
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Derin Öğrenme, Endüstri Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Betül Karakaş 0000-0001-5524-9864

Sinem Kulluk 0000-0002-0675-3113

Yayımlanma Tarihi 3 Aralık 2025
Gönderilme Tarihi 17 Şubat 2025
Kabul Tarihi 12 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 28 Sayı: 4

Kaynak Göster

APA Karakaş, B., & Kulluk, S. (2025). FARKLI YÜZEY TÜRLERİNE SAHİP ÜRÜNLERİN HATA TESPİTİNDE EVRİŞİMSEL SİNİR AĞI MİMARİLERİNİN ETKİSİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(4), 1673-1687.