Araştırma Makalesi
BibTex RIS Kaynak Göster

TİTANYUM DİOKSİT(TiO2) NANOPARTİKÜL MADDELERİN EVSEL ATIKSULAR ÜZERİNE UYGULANMASI: KİRLETİCİLERİN GİDERİMİ

Yıl 2022, , 570 - 576, 03.12.2022
https://doi.org/10.17780/ksujes.1137667

Öz

Titanyum, yerkabuğunda en bol bulunan dokuzuncu elementtir ve genellikle rutil, ilmenit ve sfen gibi minerallerde bulunur. Su ve atık su arıtımında adsorpsiyon, fotokataliz ve ileri oksidasyon prosesleri kullanılmaktadır. Bu prosesler arasında fotokataliz, kirletici içeriği yüksek atık suların arıtılması için güvenli, verimli ve çevre dostu bir arıtma prosesi olarak ortaya çıkmıştır. Titanyum dioksit (TiO2) fotokatalizör ve adsorban olarak yaygın kullanılmaktadır. Titanyum dioksit nanoparçacık malzemesi, çevresel su ve atık su arıtımı dahil olmak üzere çeşitli alanlarda uygulanmıştır. Bu çalışmada, evsel atıksularda kirleticilerin giderilmesi için TiO2 nanopartikülleri kullanılarak arıtma performansı araştırılmıştır. Sistem performansı, kimyasal oksijen ihtiyacı (KOİ), çözünmüş organik karbon (DOC) ve toplam nitrojen (TN) açısından değerlendirilmiştir. Optimum koşulları belirlemek için pH 7.2'de farklı adsorban konsantrasyonları (50-200 mg/L) ve reaksiyon süreleri (15-90 dakika) araştırılmıştır. Optimum adsorpsiyon konsantrasyonu ve reaksiyon süresi sırasıyla 50 mg TiO2/L ve 60 dakika olarak belirlenmiştir. KOİ, DOC ve TN giderim verimleri sırasıyla %80, %30 ve %35 olarak gözlenmiştir. Elde edilen sonuçlar, TiO2 nanoparçacıklarının evsel atık sularından KOİ ve DOC giderim verimi açısından yüksek olduğunu göstermektedir.

Kaynakça

  • Abu Hasan, H., Sheikh Abdullah, S.R., Kamarudin, S.K., &Tan Kofli, N. (2013). One-off control of aeration time in the simultaneous removal of ammonia and manganese using a biological aerated filter system. Process Saf. Environ. Protect. 91 (5), 415e422.
  • Burke, A., Ito, S., Snaith, H., Bach, U., Kwiatkowski, J., & Gratzel, M. (2008). The function of a TiO2 compact layer in dye-sensitized solar cells incorporating “planar” organic dyes, Nano Lett. 8 977–981.
  • Chai, L., Peng, C., Min, X., Tang, C., Song, Y.X., Zhang, Y., Zhang, J., & Ali, M., (2017). Two-sectional struvite formation process for enhanced treatment of coppere ammonia complex wastewater. Trans. Nonferrous Metals Soc. China 27(2), 457e466.
  • Chiarello, G.L. Dozzi, M.V., & Selli, E. (2017). TiO2-based materials for photocatalytic hydrogen production, J. Energy Chem. 26, 250–258.
  • Dariani, R.S., Esmaeili, A., Mortezaali, A., & Dehghanpour, S. (2016). Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik, 127(18), 7143-7154.
  • Demirel, B., (2016). The impacts of engineered nanomaterials (ENMs) on anaerobic digestion processes. Process Biochem. 51, 308–313. https://doi.org/10.1016/j. procbio.2015.12.007.
  • García, A., Delgado, L., Tora, J.A., Casals, E., Gonzalez, E., Puntes, V., Font, X., Carrera, J., & Sanchez, A., (2012). Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J. Hazard. Mater. 199– 200, 64–72. https://doi.org/10.1016/j. jhazmat.2011.10.057.
  • Ji, Y., Bai, J., Li, J., Luo, T., Qiao, L., Zeng, Q., & Zhou, B., (2017). Highly selective transformation of ammonia nitrogen to N2 based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions system. Water Res. 125, 512e519.
  • Jin, L., Zhang, G., & Tian, H. (2014). Current state of sewage treatment in China. Water research, 66, 85-98.
  • Jorgensen, T.C., & Weatherley, L.R., (2003). Ammonia removal from wastewater by ion exchange in the presence of organic contaminants. Water Res. 37 (8),1723e1728.
  • Li, Z., Wang, X., Ma, B., Wang, S., Zheng, D., She, Z., Guo, L., Zhao, Y., Xu, Q., Jin, C., Li, S., & Gao, M., (2017). Long-term impacts of titanium dioxide nanoparticles (TiO2 NPs) on performance and microbial community of activated sludge. Bioresour. Technol.238, 361–368. https://doi.org/10.1016/j.biortech.2017.04.069.
  • Lin, K. S., Lin, Y. G., Cheng, H. W., & Haung, Y.H. (2018). Preparation and characterization of V-Loaded titania nanotubes for adsorption/photocatalysis of basic dye and environmental hormone contaminated wastewaters. Catalysis Today, 307, 119-130.
  • Lin, Y., Li, D., Hu, J., Xiao, G., Wang, J., Li, W., & Fu, X. (2012). Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite. The Journal of Physical Chemistry C, 116(9), 5764-5772.
  • Liu, Z., Wang, R., Kan, F., & Jiang, F. (2014). Synthesis and characterization of TiO2 nanoparticles. Asian Journal of Chemistry, 26(3), 655.
  • Lu, H., Wang, J., Wang, T., Wang, N., Bao, Y., & Hao, H. (2017). Crystallization techniques in wastewater treatment: An overview of applications. Chemosphere, 173, 474-484.
  • Mustapha, S., Tijani, J. O., Ndamitso, M. M., Abdulkareem, A. S., Shuaib, D. T., & Mohammed, A.K. (2021). Adsorptive removal of pollutants from industrial wastewater using mesoporous kaolin and kaolin/TiO2 nanoadsorbents. Environmental Nanotechnology, Monitoring & Management, 15, 100414.
  • Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: design and applications, J. Photochem. Photobiol., C 13, 169–189.
  • Otero-Gonzalez, L., Field, J.A., & Sierra-Alvarez, R., (2014a). Fate and long-term inhibitory impact of ZnO nanoparticles during high-rate anaerobic wastewater treatment. J. Environ. Manag. 135, 110–117. https://doi.org/10.1016/j.jenvman.2014.01.025.
  • Otero-Gonzalez, L., Field, J.A., & Sierra-Alvarez, R., (2014b). Inhibition of anaerobic wastewater treatment after long-term exposure to low levels of CuO nanoparticles. Water Res. 58, 160–168. https://doi.org/10.1016/j.watres.2014.03.067.
  • Pang, Y. L., & Abdullah, A.Z. (2013). Fe3+ doped TiO2 nanotubes for combined adsorption–sonocatalytic degradation of real textile wastewater. Applied Catalysis B: Environmental, 129, 473-481.
  • Soares, A. (2020). Wastewater treatment in 2050: challenges ahead and future vision in a European context.
  • Sotoft, L.F., Pryds, M.B., Nielsen, A.K., & Norddahl, B., (2015). Process simulation of ammonia recovery from biogas digestate by air stripping with reduced chemical consumption. In: Gernaey, K.V., Huusom, J.K., Gani, R. (Eds.), Computer Aided Chemical Engineering. Elsevier, pp. 2465e2470.
  • Tijani, J. O., Momoh, U. O., Salau, R. B., Bankole, M. T., Abdulkareem, A. S., & Roos, W.D. (2019). Synthesis and characterization of Ag2O/B2 O3/TiO2 ternary nanocomposites for photocatalytic mineralization of local dyeing wastewater under artificial and natural sunlight irradiation. Environmental Science and Pollution Research, 26(19), 19942-19967.
  • Tu, Y., Feng, P., Ren, Y., Cao, Z., Wang, R., & Xu, Z., (2019). Adsorption of ammonia nitrogen on lignite and its influence on coal water slurry preparation. Fuel 238, 34e43.
  • Xing, Z. Zhang, J. Cui, J. Yin, J. Zhao, T. Kuang, J. Xiu, Z. Wan, N. & Zhou, W. (2018). Recent advances in floating TiO2-based photocatalysts for environmental application, Appl. Catal. B 225, 452–467.
  • Yang, H., Li, D., Zeng, H., & Zhang, J., (2019). Impact of Mn and ammonia on nitrogen conversion in biofilter coupling nitrification and ANAMMOX that simultaneously removes Fe, Mn and ammonia. Sci. Total Environ. 648, 955e961.
  • Zhou, W. Li, W. Wang, J.Q. Qu, Y. Yang, Y. Xie, Y. Zhang, K. Wang, L Fu,. H. & Zhao, D. (2014). Ordered mesoporous Black TiO2 as highly efficient hydrogen evolution photocatalyst, J. Am. Chem. Soc. 136, 9280–9283.

APPLICATION OF TITANIUM DIOXIDE(TiO2) NANOPARTICLE MATERIALS ON DOMESTIC WASTEWATER: REMOVAL OF POLLUTANTS

Yıl 2022, , 570 - 576, 03.12.2022
https://doi.org/10.17780/ksujes.1137667

Öz

Titanium is the ninth most abundant element in the earth's crust and is usually found in minerals such as rutile, ilmenite, and sphene. Adsorption, photocatalysis, and advanced oxidation processes are used in water and wastewater treatment. Among these processes, photocatalysis has emerged as a safe, efficient, and environmentally friendly treatment process for the treatment of wastewater with high pollutant content. Titanium dioxide (TiO2) is widely used as a photocatalyst and adsorbent. Titanium dioxide nanoparticle material has been applied in various fields, including environmental water and wastewater treatment. In this study, treatment performance was investigated by using TiO2 nanoparticles for the removal of pollutants in domestic wastewater. System performance was evaluated in terms of chemical oxygen demand (COD), dissolved organic carbon (DOC), and total nitrogen (TN). Different adsorbent concentrations (50-200 mg/L) and reaction times (15-90 min) were investigated at pH 7.2 to determine optimum conditions. Optimum adsorption concentration and reaction time were found to be 50 mg TiO2/L and 60 minutes, respectively. COD, DOC, and TN removal efficiencies were observed as 80%, 30%, and 35%, respectively. The obtained results showed that the removal efficiency of COD and DOC from domestic wastewater of TiO2 nanoparticles is high.

Kaynakça

  • Abu Hasan, H., Sheikh Abdullah, S.R., Kamarudin, S.K., &Tan Kofli, N. (2013). One-off control of aeration time in the simultaneous removal of ammonia and manganese using a biological aerated filter system. Process Saf. Environ. Protect. 91 (5), 415e422.
  • Burke, A., Ito, S., Snaith, H., Bach, U., Kwiatkowski, J., & Gratzel, M. (2008). The function of a TiO2 compact layer in dye-sensitized solar cells incorporating “planar” organic dyes, Nano Lett. 8 977–981.
  • Chai, L., Peng, C., Min, X., Tang, C., Song, Y.X., Zhang, Y., Zhang, J., & Ali, M., (2017). Two-sectional struvite formation process for enhanced treatment of coppere ammonia complex wastewater. Trans. Nonferrous Metals Soc. China 27(2), 457e466.
  • Chiarello, G.L. Dozzi, M.V., & Selli, E. (2017). TiO2-based materials for photocatalytic hydrogen production, J. Energy Chem. 26, 250–258.
  • Dariani, R.S., Esmaeili, A., Mortezaali, A., & Dehghanpour, S. (2016). Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik, 127(18), 7143-7154.
  • Demirel, B., (2016). The impacts of engineered nanomaterials (ENMs) on anaerobic digestion processes. Process Biochem. 51, 308–313. https://doi.org/10.1016/j. procbio.2015.12.007.
  • García, A., Delgado, L., Tora, J.A., Casals, E., Gonzalez, E., Puntes, V., Font, X., Carrera, J., & Sanchez, A., (2012). Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J. Hazard. Mater. 199– 200, 64–72. https://doi.org/10.1016/j. jhazmat.2011.10.057.
  • Ji, Y., Bai, J., Li, J., Luo, T., Qiao, L., Zeng, Q., & Zhou, B., (2017). Highly selective transformation of ammonia nitrogen to N2 based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions system. Water Res. 125, 512e519.
  • Jin, L., Zhang, G., & Tian, H. (2014). Current state of sewage treatment in China. Water research, 66, 85-98.
  • Jorgensen, T.C., & Weatherley, L.R., (2003). Ammonia removal from wastewater by ion exchange in the presence of organic contaminants. Water Res. 37 (8),1723e1728.
  • Li, Z., Wang, X., Ma, B., Wang, S., Zheng, D., She, Z., Guo, L., Zhao, Y., Xu, Q., Jin, C., Li, S., & Gao, M., (2017). Long-term impacts of titanium dioxide nanoparticles (TiO2 NPs) on performance and microbial community of activated sludge. Bioresour. Technol.238, 361–368. https://doi.org/10.1016/j.biortech.2017.04.069.
  • Lin, K. S., Lin, Y. G., Cheng, H. W., & Haung, Y.H. (2018). Preparation and characterization of V-Loaded titania nanotubes for adsorption/photocatalysis of basic dye and environmental hormone contaminated wastewaters. Catalysis Today, 307, 119-130.
  • Lin, Y., Li, D., Hu, J., Xiao, G., Wang, J., Li, W., & Fu, X. (2012). Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite. The Journal of Physical Chemistry C, 116(9), 5764-5772.
  • Liu, Z., Wang, R., Kan, F., & Jiang, F. (2014). Synthesis and characterization of TiO2 nanoparticles. Asian Journal of Chemistry, 26(3), 655.
  • Lu, H., Wang, J., Wang, T., Wang, N., Bao, Y., & Hao, H. (2017). Crystallization techniques in wastewater treatment: An overview of applications. Chemosphere, 173, 474-484.
  • Mustapha, S., Tijani, J. O., Ndamitso, M. M., Abdulkareem, A. S., Shuaib, D. T., & Mohammed, A.K. (2021). Adsorptive removal of pollutants from industrial wastewater using mesoporous kaolin and kaolin/TiO2 nanoadsorbents. Environmental Nanotechnology, Monitoring & Management, 15, 100414.
  • Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: design and applications, J. Photochem. Photobiol., C 13, 169–189.
  • Otero-Gonzalez, L., Field, J.A., & Sierra-Alvarez, R., (2014a). Fate and long-term inhibitory impact of ZnO nanoparticles during high-rate anaerobic wastewater treatment. J. Environ. Manag. 135, 110–117. https://doi.org/10.1016/j.jenvman.2014.01.025.
  • Otero-Gonzalez, L., Field, J.A., & Sierra-Alvarez, R., (2014b). Inhibition of anaerobic wastewater treatment after long-term exposure to low levels of CuO nanoparticles. Water Res. 58, 160–168. https://doi.org/10.1016/j.watres.2014.03.067.
  • Pang, Y. L., & Abdullah, A.Z. (2013). Fe3+ doped TiO2 nanotubes for combined adsorption–sonocatalytic degradation of real textile wastewater. Applied Catalysis B: Environmental, 129, 473-481.
  • Soares, A. (2020). Wastewater treatment in 2050: challenges ahead and future vision in a European context.
  • Sotoft, L.F., Pryds, M.B., Nielsen, A.K., & Norddahl, B., (2015). Process simulation of ammonia recovery from biogas digestate by air stripping with reduced chemical consumption. In: Gernaey, K.V., Huusom, J.K., Gani, R. (Eds.), Computer Aided Chemical Engineering. Elsevier, pp. 2465e2470.
  • Tijani, J. O., Momoh, U. O., Salau, R. B., Bankole, M. T., Abdulkareem, A. S., & Roos, W.D. (2019). Synthesis and characterization of Ag2O/B2 O3/TiO2 ternary nanocomposites for photocatalytic mineralization of local dyeing wastewater under artificial and natural sunlight irradiation. Environmental Science and Pollution Research, 26(19), 19942-19967.
  • Tu, Y., Feng, P., Ren, Y., Cao, Z., Wang, R., & Xu, Z., (2019). Adsorption of ammonia nitrogen on lignite and its influence on coal water slurry preparation. Fuel 238, 34e43.
  • Xing, Z. Zhang, J. Cui, J. Yin, J. Zhao, T. Kuang, J. Xiu, Z. Wan, N. & Zhou, W. (2018). Recent advances in floating TiO2-based photocatalysts for environmental application, Appl. Catal. B 225, 452–467.
  • Yang, H., Li, D., Zeng, H., & Zhang, J., (2019). Impact of Mn and ammonia on nitrogen conversion in biofilter coupling nitrification and ANAMMOX that simultaneously removes Fe, Mn and ammonia. Sci. Total Environ. 648, 955e961.
  • Zhou, W. Li, W. Wang, J.Q. Qu, Y. Yang, Y. Xie, Y. Zhang, K. Wang, L Fu,. H. & Zhao, D. (2014). Ordered mesoporous Black TiO2 as highly efficient hydrogen evolution photocatalyst, J. Am. Chem. Soc. 136, 9280–9283.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Mühendisliği
Bölüm Çevre Mühendisliği
Yazarlar

Serdar Göçer 0000-0003-0443-8045

Melike Kozak 0000-0001-6985-3587

İrem Ayranpınar 0000-0001-8132-3490

Ahmet Duyar 0000-0001-8850-8308

Emre Oğuz Köroğlu 0000-0002-6027-6792

Kevser Cırık 0000-0002-1756-553X

Yayımlanma Tarihi 3 Aralık 2022
Gönderilme Tarihi 29 Haziran 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Göçer, S., Kozak, M., Ayranpınar, İ., Duyar, A., vd. (2022). APPLICATION OF TITANIUM DIOXIDE(TiO2) NANOPARTICLE MATERIALS ON DOMESTIC WASTEWATER: REMOVAL OF POLLUTANTS. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(4), 570-576. https://doi.org/10.17780/ksujes.1137667