NESNELERİN İNTERNETİ (IOT) UYGULAMALARI İÇİN POLARİZASYONDAN BAĞIMSIZ METAMALZEME EMİCİ TABANLI ENERJİ HASATLAMA
Yıl 2022,
, 461 - 471, 03.09.2022
Ayşe İncesu Dokumacı
,
Muharrem Karaaslan
,
Vedat Özkaner
Öz
Bu çalışmada Nesnelerin İnterneti (IoT) için metamalzeme emici tabanlı enerji hasatlayıcı önerilmiştir. Önerilen metamalzeme yapının ön yüzeyi bakır rezonatör ile dielektrik malzemeden ve arka yüzey de tamamen bakırdan oluşmaktadır. Önerilen metamalzeme tabanlı emici 2.44 GHz ve 4.33 GHz mikrodalga frekanslarında çalışmaktadır. Bu çalışmada enine elektrik (TE), enine manyetik (TM) ve enine elektromanyetik (TEM) modları sayısal olarak incelenmiş ve emilim değerleri karşılaştırılmıştır. Bu çalışmada Sonlu Entegrasyon Tekniği (FIT) tabanlı simülasyon programı kullanılmış ve FIT tabanlı simülasyon sonuçlarına göre 2.44 GHz'de emilim tepe noktası yaklaşık %90 ve 4.33 GHz frekansta ise emilim tepe noktası %98'dir.Sunulan yapının sinyal emici özelliği sayesinde hapsolan elektromanyetik enerji yerleştirilen dirençler üzerinden elektrik enerjisine dönüştürülmüştür. Böylece önerilen metamalzeme emici tabanlı enerji hasatlayıcı yapı ile elektromanyetik dalgaların enerji emilimi ve dönüşümü daha küçük yapılarla daha verimli sonuçlar sağlanmıştır.
Kaynakça
- Amiri, M., Tofigh, F., Shariati, N., Lipman, J., & Abolhasan, M. (2019). Miniature tri‐wideband Sierpinski–Minkowski fractals metamaterial perfect absorber. IET Microwaves, Antennas & Propagation, 13(7), 991-996. https://doi.org/10.1049/iet-map.2018.5837
- Bağmancı, M., Karaaslan, M., Altıntaş, O., Karadağ, F., Tetik, E., & Bakır, M. (2018). Wideband metamaterial absorber based on CRRs with lumped elements for microwave energy harvesting. Journal of microwave power and electromagnetic energy, 52(1), 45-59. https://doi.org/10.1080/08327823.2017.1405471
- Bakir, M., Karaaslan, M., Akgol, O., Altintas, O., Unal, E., & Sabah, C. (2018). Sensory applications of resonator based metamaterial absorber. Optik, 168, 741-746. https://doi.org/10.1016/j.ijleo.2018.05.002
- Bakir, M., Karaaslan, M., Dincer, F., Akgol, O., & Sabah, C. (2016). Electromagnetic energy harvesting and density sensor application based on perfect metamaterial absorber. International Journal of Modern Physics B, 30(20), 1650133. https://doi.org/10.1142/S0217979216501332
- Biswas, A., Hamidi, S. B., Biswas, C., Roy, P., Mitra, D., & Dawn, D. (2018). A novel CMOS RF energy harvester for self-sustainable applications. In 2018 IEEE 19th Wireless and Microwave Technology Conference (WAMICON) (pp.1-5). IEEE.
- Costa, F., Genovesi, S., Monorchio, A., & Manara, G. (2013). Low-cost metamaterial absorbers for sub-GHz wireless systems. IEEE Antennas and Wireless Propagation Letters, 13, 27-30. https://doi.org/10.1109/LAWP.2013.2294791
- Dincer, F., Bakir, M., Karaaslan, M., Delihacioglu, K., & Sabah, C. (2016). Perfect Metamaterial absorber based energy harvesting application in ISM Band. International Journal of Business and Technology, 4(2), 5. https://doi.org/10.33107/ubt-ic.2015.91
- Hajizadegan, M., Ahmadi, V., & Sakhdari, M. (2013). Design and analysis of ultrafast and tunable all optical metamaterial switch enhanced by metal nanocomposite. Journal of lightwave technology, 31(12), 1877-1883. https://doi.org/10.1109/JLT.2013.2261854
- Karaaslan, M., Bağmancı, M., Ünal, E., Akgol, O., & Sabah, C. (2017). Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications. Optics Communications, 392, 31-38. https://doi.org/10.1016/j.optcom.2017.01.043
- Kaur, K. P., Upadhyaya, T., Palandoken, M., & Gocen, C. (2019). Ultrathin dual‐layer triple‐band flexible microwave metamaterial absorber for energy harvesting applications. International Journal of RF and Microwave Computer‐Aided Engineering, 29(1), e21646. https://doi.org/10.1002/mmce.21646
- Liu, Z., Liu, X., Wang, Y., Liu, G., & Tang, C. (2020). Silicon antennas metasurface based light absorber with quantitatively adjustable operating frequency and intensity. IEEE Journal of Selected Topics in Quantum Electronics, 27(1), 1-6. https://doi.org/10.1109/JSTQE.2020.2987179
- Mattsson, M., Kolitsidas, C. I., & Jonsson, B. L. G. (2018). Dual-band dual-polarized full-wave rectenna based on differential field sampling. IEEE Antennas and Wireless Propagation Letters, 17(6), 956-959. https://doi.org/10.1109/LAWP.2018.2825783
- Redo-Sanchez, A., Laman, N., Schulkin, B., & Tongue, T. (2013). Review of terahertz technology readiness assessment and applications. Journal of Infrared, Millimeter, and Terahertz Waves, 34(9), 500-518. https://doi.org/10.1007/s10762-013-9998-y
- Shang, S., Yang, S., Shan, M., Liu, J., & Cao, H. (2017). High performance metamaterial device with enhanced electromagnetic energy harvesting efficiency. AIP Advances, 7(10), 105204. https://doi.org/10.1063/1.5002165
- Unal, E., Dincer, F., Tetik, E., Karaaslan, M., Bakir, M., & Sabah, C. (2015). Tunable perfect metamaterial absorber design using the golden ratio and energy harvesting and sensor applications. Journal of Materials Science: Materials in Electronics, 26(12), 9735-9740. https://doi.org/10.1007/s10854-015-3642-7
- Wang, B. X., Zhai, X., Wang, G. Z., Huang, W. Q., & Wang, L. L. (2014). Design of a four-band and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics Journal, 7(1), 1-8. https://doi.org/ 10.1109/JPHOT.2014.2381633