TERMOGRAVİMETRIK ANALİZ İLE FARKLI KÖMÜRLERİN YANMA PROSESİNİN İNCELENMESİ
Yıl 2022,
, 691 - 701, 03.12.2022
Jale Naktiyok
,
Abdulkadir Özer
Öz
Bu çalışmada üç farklı kömürün hava atmosferinde yanma prosesleri termal analiz (TG-DTG/DSC) cihazı ile incelendi. Termogravimetrik analiz deneyleri için 25°C’den 1000°C’ye kadar hava atmosferinde 10°C/dak ısıtma hızında çalışıldı. TG-DTG/DSC verilerinden faydalanarak örneklerin hem ana yanma bölgesi için gerekli olan aktivasyon enerjileri hesaplandı, hem de kendiliğinden ısınma sıcaklıkları belirlendi. Yanma kinetiği için modele bağlı (model fitting) metotlardan olan Ortega metodu uygulandı. Buna göre EK kömürünün ana yanma bölgesine ait olan aktivasyon enerjisi 69.49 kJ/mol, TK kömürünün 86.77 kJ/mol ve YK kömürünün ise 77.34 kJ/mol’ dür. TK ve EK linyitlerinin kendiliğinden ısınma sıcaklıklarının oldukça düşük, YK kömürünün ise oldukça yüksek olduğu belirlendi. EK kömürünün düşük karbon, yüksek kül içeriğinden dolayı diğer kömürlere göre daha düşük tutuşma ve yanma sıcaklıklarına sahip iken YK kömürünün yüksek karbon ve düşük kül içeriğinden dolayı yüksek tutuşma ve yanma sıcaklıklarına sahip olduğu anlaşıldı.
Kaynakça
- Adamski SA. (2003). Prevention of spontaneous combustion of backfilled plant waste material. Report No. COL713, Safety in Mines Research Advisory Committee, 2003, 1-57. http://researchspace.csir.co.za/dspace/bitstream/10204/1285/1/COL713.pdf
- Burnham, A. K. (2000). Computational Aspects of Kinetic Analysis. Part D: The ICTAC Kinetics Project-Multi-Thermal-History Model-Fitting Methods and Their Relation to Isoconversional Methods. Thermochimica Acta, 355, 165-170. https://doi.org/10.1016/S0040-6031(00)00446-9
- Chen X. (1999). On basket heating methods for obtaining exothermic reactivity of solid materials: The extent and impact of the departure of the crossing-point temperature from the oven temperature. Trans IChemE, 77, 187-192. https://doi.org/10.1205/095758299530053
- Jones J. (1999). Recent developments and improvements in test methods for propensity towards spontaneous heating. Fire and Materials, 23, 239-243. https://doi.org/10.1002/(SICI)1099-1018(199909/10)23:5<239::AID-FAM692> 3.0. CO;2-F
- Kucuk A, Kadıoglu Y, and Gülaboğlu M.Ş. (2003). Study of spontaneous combustion characteristics of a Turkish lignite: particle size, moisture of coal, humidity of air. Combustion and Flame, 133, 255-261. https://doi.org/10.1016/S0010-2180(02)00553-9
- Kok MV, Pokol G, Keskin C, Madarasz J and Bagci S. (2004). Combustion Characteristics of Lignite and Oil Shale Samples by Thermal Analysis Techniques. J Therm Anal Calorim,76, 247-254. https://link.springer.com/content/pdf/10.1023/B:JTAN.0000027823.17643.5b.pdf
- Kizgut S, Yilmaz S. (2004). Characterization and non-isothermal decomposition kinetics of some Turkish bituminous coals by thermal analysis. Fuel Process Technol. 85(2–3), 15, 103–11. https://doi.org/10.1016/S0378-3820(03)00111-5
- Kök MV. (2007). Non-isothermal DSC and TG/DTG analysis of the combustion of Silopi asphaltites. J Therm Anal Calorim, 88(3), 663–8. https://link.springer.com/content/pdf/10.1007/s10973-006-8028-x.pdf
- Kömür (Linyit) Sektör Raporu, (2020). https://webim.tki.gov.tr › file
- Lakra R. (2011). Assesment of spontaneous heating of some Indian coking and non-coking coal. BTech Thesis, Department of Mining Engineering National Institute of Technology, Rourkela- 769008, 1-72. http://ethesis.nitrkl.ac.in/2606/1/RAJDEEP_LAKRA_FINAL_THESIS_PROJECT.pdf
- Liu Z, Quek A, Hoekman SK, Srinivasan MP, Balasubramanian R. (2012). Thermogravimetric investigation of hydrochar-lignite co-combustion. Bioresource Technology, 123, 646-652. https://doi.org/10.1016/j.biortech.2012.06.063.
- Maciejewski, M. (2000). Computational Aspects of Kinetic Analysis. Part B: The ICTAC Kinetics Project-The Decomposition Kinetics of Calcium Carbonate Revisited, or Some Tips on Survival in the Kinetic Minefield, Thermochimica Acta, 355, 145-154. https://doi.org/10.1016/S0040-6031(00)00444-5
- Marinova SP, Gonsalvesh L, Stefanova M, Yperman J, Carleer R, Reggers G, Yürüm Y, Groudeva V, Gadjanov P. (2009). Combustion behaviour of some biodesulphurized coals assessed by TGA/DTA. Thermochimica Acta, 497 (1-2), 46-51. https://doi.org/10.1016/j.tca.2009.08.012
- Mohalik NK, Panigrahi DC, Singh VK. (2009). Application of Thermal Analysis Technique to Assess Proneness of Coal to Spontaneous Heating. J Thermal Anal Calorim, 98, 507-519. https://link.springer.com/content/pdf/10.1007/s10973-009-0305-z.pdf
- Naktiyok J. (2018a). TG-DSC and TG-FTIR Analysis for the Determination of the Lignite-Combustion Process, 1st International Eurasian Conference on Science, Engineering and Technology (EurasianSciEnTech Ankara, Türkiye, 22-23 Kasım pp.1855-1861.
- Naktiyok J. (2018b). Determination of the Self-Heating Temperature of Coal by Means of TGA Analysis, Energy &
Fuels, 32 (2), 2299-2305. https://doi.org/10.1021/acs.energyfuels.7b02296
- Ortega, A. (1996). Some successes and failures of the methods based on several experiments. Thermochima Acta 284, 379–87. http://doi:10.1016/0040-6031(95)02766-1
- Uludag S. (2007). A visit to the research on Wits-Ehac index and its relationship to inherent coal properties for Witbank Coalfied. The Journal of The Southern African Institute of Mining and Metallurgy, 107, 671-679. https://www.saimm.co.za/Journal/v107n10p671.pdf
- Wang H, Dlugogorski BZ, Kennedy EM. (2003). Coal oxidation at low temperatures: oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Progress in Energy and Combustion Science, 29, 487-513. https://doi.org/10.1016/S0360-1285(03)00042-X.
- Varol M, AT Atimtay, B Bay, Olgun H. (2010). Investigation of co-combustion characteristics of low quality lignite coals and biomass with thermogravimetric analysis. Thermochimica Acta, 510, 195-201. https://doi.org/10.1016/j.tca.2010.07.014
- Vyazovkin, S. (2000). Computational Aspects of Kinetic Analysis. Part C. The ICTAC Kinetics Project-The Light at the End of the Tunnel? Thermochimica Acta, 355, 155-163. https://doi.org/10.1016/S0040-6031(00)00445-7