Bu çalışmada Tüm Vücut Titreşiminin değerlendirilmesi kavramını açıklayan ISO 2631 standardında tanımlanan titreşim parametrelerinin belirlenmesinde vücut ağırlığının etkisi araştırılmıştır. Öncelikle taşıt içerisinde maruz kalınan titreşimin genliğini önemli derecede etkileyen sürüş hızı bileşeni belirlenmiştir. Bu kapsamda düzgünsüzlüğünün homojen olduğu kabul edilebilen bir yol kesiminde 20, 30, 40 ve 50 km/sa sürüş hızlarında taşıt içerisinde üç farklı noktada titreşim verileri kaydedilmiştir. Sürücü ağırlığının titreşim parametreleri üzerindeki etkisini tespit edebilmek için ölçümler 58, 80 ve 113 kg ağırlığındaki sürücüler ile tekrarlanmıştır. Analizler sonucu üretilen titreşim parametreleri parametrik ve parametrik olmayan istatistik analiz yöntemleri ile değerlendirilmiştir. Bitümlü sıcak karışım kaplamalı kentsel yol ağında, binek araç türü taşıtlarda üstyapının hizmet seviyesinin değerlendirmesini yapabilmek için en uygun sürüş hızının 40 km/sa olduğu tespit edilmiştir. Son aşamada, belirlenen sürüş hızında üç farklı ağırlıktaki sürücü ile yapılan ölçümlerin ortalamaları arasındaki farklar istatistik olarak değerlendirilmiştir. Taşıt içerisinde veri kaydedilen üç farklı noktada tüm titreşim parametreleri üzerinde sürücü ağırlığının etkisiz olduğu tespit edilmiştir.
Abudinen, D., Fuentes, L. G., & Carvajal Muñoz, J. S. (2017). Travel Quality Assessment of Urban Roads Based on International Roughness Index. Transportation Research Record: Journal of the Transportation Research Board, 2612, 1-10. https://doi.org/10.3141/2612-01
Agostinacchio, M., Ciampa, D., & Olita, S. (2013). The vibrations induced by surface irregularities in road pavements – a Matlab® approach. European Transport Research Review, 6(3), 267-275. https://doi.org/10.1007/s12544-013-0127-8
Ahlin, K., & Granlund, N. O. J. (2002). Relating Road Roughness and Vehicle Speeds to Human Whole Body Vibration and Exposure Limits. International Journal of Pavement Engineering, 3(4), 207-216. https://doi.org/10.1080/10298430210001701
Alem, N. (2005). Application of the New ISO 2631-5 to Health Hazard Assessment of Repeated Shocks in U.S. Army Vehicles. Industrial Health, 43(3), 403-412. https://doi.org/10.2486/indhealth.43.403
Bolling, A., Jansson, J., Hjort, M., Lidström, M., Nordmark, S., Sehammar, H. k., & Sjögren, L. (2011). An Approach for Realistic Simulation of Real Road Condition in a Moving Base Driving Simulator. Journal of Computing and Information Science in Engineering, 11(4), 041009. https://doi.org/10.1115/1.4005450
Cantisani, G., & Loprencipe, G. (2010). Road Roughness and Whole Body Vibration: Evaluation Tools and Comfort Limits. Journal of Transportation Engineering, 136(9), 818-826. https://doi.org/10.1061//ASCE/TE.1943-5436.0000143
Du, H., Li, W., Ning, D., & Sun, S. (2020). Advanced Seat Suspension Control System Design for Heavy Duty Vehicles (1st Edition ed.). London, UK: Academic Press.
Duarte, M. L. M., & de Melo, G. C. (2018). Influence of pavement type and speed on whole body vibration (WBV) levels measured on passenger vehicles. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(3), 150. https://doi.org/10.1007/s40430-018-1057-0
González, A., O'Brien, E. J., Li, Y. Y., & Cashell, K. (2008). The use of vehicle acceleration measurements to estimate road roughness. Vehicle System Dynamics, 46(6), 483-499. https://doi.org/10.1080/00423110701485050
Griffin, M. J. (2012). Handbook of human vibration. London, UK: Academic press.
Haas, R., Hudson, W. R., & Zaniewski, J. P. (1994). Modern Pavement Management. Malabar, Florida, USA: Krieger Pub. Co.
Hou, X., Liang, X., Ma, S., & Hua, W. (2009, 5-9 August). The Analysis of the Correlation between International Roughness Index and Body Ride Comfort. Paper presented at the Ninth International Conference of Chinese Transportation Professionals (ICCTP), Harbin, China.
ISO. (1995). Mechanical vibration - Road surface profiles - Reporting of measured data. In ISO 8608. Geneva, Switzerland: ISO.
ISO. (1997). Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration, Part 1: General Requirement. In ISO 2631-1. Geneva, Switzerland: ISO.
Kropáč, O., & Múčka, P. (2005). Be careful when using the International Roughness Index as an indicator of road unevenness. Journal of Sound and Vibration, 287(4-5), 989-1003. https://doi.org/10.1016/j.jsv.2005.02.015
Liu, Z., Zhang, E., & Ji, Z. (2008). Simulation and Experimental Study of Human Riding Comfort in Dynamic Man-Automobile System. In Intelligent Robotics and Applications (pp. 577-587): Springer.
Múčka, P. (2015). Sensitivity of Road Unevenness Indicators to Distresses of Composite Pavements. International Journal Pavement Research Technology, 8(2), 72-84. https://doi.org/10.6135/ijprt.org.tw/2015.8(2).72
Múčka, P. (2017). Road Roughness Limit Values Based on Measured Vehicle Vibration. Journal of Infrastructure Systems, 23(2), 04016029. https://doi.org/10.1061/(asce)is.1943-555x.0000325
Múčka, P. (2020). Vibration Dose Value in Passenger Car and Road Roughness. Journal of Transportation Engineering, Part B: Pavements, 146(4), 04020064. https://doi.org/10.1061/jpeodx.0000200
Múčka, P. (2021). International Roughness Index Thresholds Based on Whole-Body Vibration in Passenger Cars. Transportation Research Record, 2675(1), 305-320. https://doi.org/10.1177/0361198120960475
Muniz de Farias, M., & de Souza, R. O. (2009). Correlations and Analyses of Longitudinal Roughness Indices. Road Materials and Pavement Design, 10(2), 399-415. https://doi.org/10.1080/14680629.2009.9690202
Nguyen, T., Lechner, B., Wong, Y. D., & Tan, J. Y. (2019). Bus Ride Index – a refined approach to evaluating road surface irregularities. Road Materials and Pavement Design, 22(2), 423-443. https://doi.org/10.1080/14680629.2019.1625806
Turner, M., & Griffin, M. J. (1999). Motion sickness in public road transport: passenger behavior and susceptibility. Ergonomics, 42(3), 444-461. https://doi.org/10.1080/001401399185586
Wang, F., & Easa, S. (2016). Analytical Evaluation of Ride Comfort on Asphalt Concrete Pavements. Journal of Testing and Evaluation, 44(4), 1671-1682. https://doi.org/10.1520/jte20140339
Wang, S., Zhang, J., & Yang, Z. (2010). Experiment on Asphalt Pavement Roughness Evaluation Based on Passengers' Physiological and Psychological Reaction. Paper presented at the 10th International Conference of Chinese Transportation Professionals—Integrated Transportation Systems: Green, Intelligent, Reliable, Beijing, China.
Zhang, C., & Guo, L.-X. (2023). Analysis of lumbar spine injury with different back inclinations under whole-body vibration: A finite element study based on whole human body models. International Journal of Industrial Ergonomics, 95. https://doi.org/10.1016/j.ergon.2023.103447
Zhang, J., Wang, L., Jing, P., Wu, Y., & Li, H. (2020). IRI Threshold Values Based on Riding Comfort. Journal of Transportation Engineering, Part B: Pavements, 146(1), 04020001. https://doi.org/10.1061/jpeodx.0000144
INVESTIGATION OF THE EFFECT OF BODY WEIGHT AND VEHICLE SPEED ON THE MEASUREMENT OF VIBRATIONS USED IN HIGHWAY PAVEMENT EVALUATION
The study delved into investigating the impact of body weight on the determination of vibration parameters, as outlined in the ISO 2631 standard, which elucidates the evaluation concept of Whole Body Vibration. First of all, the ride speed component, which significantly affects the amplitude of the vibration experienced in the vehicle, was determined. In this context, vibration data were recorded at three different points in the vehicle at 20, 30, 40, and 50 km/h ride speeds on a road section whose roughness can be considered homogeneous. Measurements were repeated with drivers weighing 58, 80, and 113 kg to determine the effect of driver weight on vibration parameters. The vibration parameters produced due to the analyses were evaluated with both parametric and non-parametric statistical methods. In the urban road network with bituminous hot mixture pavement, it has been determined that the most appropriate ride speed for passenger car-type vehicles to evaluate the service level of the pavement is 40 km/h. In the last stage, the differences between the averages of the measurements made with three different weight drivers at the determined ride speed were evaluated statistically. Through analysis of three distinct data recording points within the vehicle, it has been established that the driver's weight exerts no discernible influence on any of the vibration parameters.
Abudinen, D., Fuentes, L. G., & Carvajal Muñoz, J. S. (2017). Travel Quality Assessment of Urban Roads Based on International Roughness Index. Transportation Research Record: Journal of the Transportation Research Board, 2612, 1-10. https://doi.org/10.3141/2612-01
Agostinacchio, M., Ciampa, D., & Olita, S. (2013). The vibrations induced by surface irregularities in road pavements – a Matlab® approach. European Transport Research Review, 6(3), 267-275. https://doi.org/10.1007/s12544-013-0127-8
Ahlin, K., & Granlund, N. O. J. (2002). Relating Road Roughness and Vehicle Speeds to Human Whole Body Vibration and Exposure Limits. International Journal of Pavement Engineering, 3(4), 207-216. https://doi.org/10.1080/10298430210001701
Alem, N. (2005). Application of the New ISO 2631-5 to Health Hazard Assessment of Repeated Shocks in U.S. Army Vehicles. Industrial Health, 43(3), 403-412. https://doi.org/10.2486/indhealth.43.403
Bolling, A., Jansson, J., Hjort, M., Lidström, M., Nordmark, S., Sehammar, H. k., & Sjögren, L. (2011). An Approach for Realistic Simulation of Real Road Condition in a Moving Base Driving Simulator. Journal of Computing and Information Science in Engineering, 11(4), 041009. https://doi.org/10.1115/1.4005450
Cantisani, G., & Loprencipe, G. (2010). Road Roughness and Whole Body Vibration: Evaluation Tools and Comfort Limits. Journal of Transportation Engineering, 136(9), 818-826. https://doi.org/10.1061//ASCE/TE.1943-5436.0000143
Du, H., Li, W., Ning, D., & Sun, S. (2020). Advanced Seat Suspension Control System Design for Heavy Duty Vehicles (1st Edition ed.). London, UK: Academic Press.
Duarte, M. L. M., & de Melo, G. C. (2018). Influence of pavement type and speed on whole body vibration (WBV) levels measured on passenger vehicles. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(3), 150. https://doi.org/10.1007/s40430-018-1057-0
González, A., O'Brien, E. J., Li, Y. Y., & Cashell, K. (2008). The use of vehicle acceleration measurements to estimate road roughness. Vehicle System Dynamics, 46(6), 483-499. https://doi.org/10.1080/00423110701485050
Griffin, M. J. (2012). Handbook of human vibration. London, UK: Academic press.
Haas, R., Hudson, W. R., & Zaniewski, J. P. (1994). Modern Pavement Management. Malabar, Florida, USA: Krieger Pub. Co.
Hou, X., Liang, X., Ma, S., & Hua, W. (2009, 5-9 August). The Analysis of the Correlation between International Roughness Index and Body Ride Comfort. Paper presented at the Ninth International Conference of Chinese Transportation Professionals (ICCTP), Harbin, China.
ISO. (1995). Mechanical vibration - Road surface profiles - Reporting of measured data. In ISO 8608. Geneva, Switzerland: ISO.
ISO. (1997). Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration, Part 1: General Requirement. In ISO 2631-1. Geneva, Switzerland: ISO.
Kropáč, O., & Múčka, P. (2005). Be careful when using the International Roughness Index as an indicator of road unevenness. Journal of Sound and Vibration, 287(4-5), 989-1003. https://doi.org/10.1016/j.jsv.2005.02.015
Liu, Z., Zhang, E., & Ji, Z. (2008). Simulation and Experimental Study of Human Riding Comfort in Dynamic Man-Automobile System. In Intelligent Robotics and Applications (pp. 577-587): Springer.
Múčka, P. (2015). Sensitivity of Road Unevenness Indicators to Distresses of Composite Pavements. International Journal Pavement Research Technology, 8(2), 72-84. https://doi.org/10.6135/ijprt.org.tw/2015.8(2).72
Múčka, P. (2017). Road Roughness Limit Values Based on Measured Vehicle Vibration. Journal of Infrastructure Systems, 23(2), 04016029. https://doi.org/10.1061/(asce)is.1943-555x.0000325
Múčka, P. (2020). Vibration Dose Value in Passenger Car and Road Roughness. Journal of Transportation Engineering, Part B: Pavements, 146(4), 04020064. https://doi.org/10.1061/jpeodx.0000200
Múčka, P. (2021). International Roughness Index Thresholds Based on Whole-Body Vibration in Passenger Cars. Transportation Research Record, 2675(1), 305-320. https://doi.org/10.1177/0361198120960475
Muniz de Farias, M., & de Souza, R. O. (2009). Correlations and Analyses of Longitudinal Roughness Indices. Road Materials and Pavement Design, 10(2), 399-415. https://doi.org/10.1080/14680629.2009.9690202
Nguyen, T., Lechner, B., Wong, Y. D., & Tan, J. Y. (2019). Bus Ride Index – a refined approach to evaluating road surface irregularities. Road Materials and Pavement Design, 22(2), 423-443. https://doi.org/10.1080/14680629.2019.1625806
Turner, M., & Griffin, M. J. (1999). Motion sickness in public road transport: passenger behavior and susceptibility. Ergonomics, 42(3), 444-461. https://doi.org/10.1080/001401399185586
Wang, F., & Easa, S. (2016). Analytical Evaluation of Ride Comfort on Asphalt Concrete Pavements. Journal of Testing and Evaluation, 44(4), 1671-1682. https://doi.org/10.1520/jte20140339
Wang, S., Zhang, J., & Yang, Z. (2010). Experiment on Asphalt Pavement Roughness Evaluation Based on Passengers' Physiological and Psychological Reaction. Paper presented at the 10th International Conference of Chinese Transportation Professionals—Integrated Transportation Systems: Green, Intelligent, Reliable, Beijing, China.
Zhang, C., & Guo, L.-X. (2023). Analysis of lumbar spine injury with different back inclinations under whole-body vibration: A finite element study based on whole human body models. International Journal of Industrial Ergonomics, 95. https://doi.org/10.1016/j.ergon.2023.103447
Zhang, J., Wang, L., Jing, P., Wu, Y., & Li, H. (2020). IRI Threshold Values Based on Riding Comfort. Journal of Transportation Engineering, Part B: Pavements, 146(1), 04020001. https://doi.org/10.1061/jpeodx.0000144
Kırbaş, U., & Karasahin, M. (2024). INVESTIGATION OF THE EFFECT OF BODY WEIGHT AND VEHICLE SPEED ON THE MEASUREMENT OF VIBRATIONS USED IN HIGHWAY PAVEMENT EVALUATION. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(1), 49-60. https://doi.org/10.17780/ksujes.1336379