Araştırma Makalesi
BibTex RIS Kaynak Göster

METALLERİN YAPIŞTIRMA BAĞLANTILARININ FARKLI MODELLEME YAKLAŞIMLARI KULLANARAK SONLU ELEMANLAR YÖNTEMİ İLE KARŞILAŞTIRMALI STATİK YÜKLEME ANALİZİ

Yıl 2024, , 763 - 778, 03.09.2024
https://doi.org/10.17780/ksujes.1419319

Öz

Yapışma bağlantıları hafiflik, estetik nihai ürün, titreşim sönümleme, malzeme çeşitliliği ve kolay kullanım gibi avantajlar ile ön plana çıkmaktadır. Yapışma bağındaki yük dağılımını ve dayanımını hesaplamak için kullanılan yöntemlerden biri sonlu elemanlar yöntemidir. Sonlu elemanlar yöntemi mühendislik problemlerinin çözümünde, karmaşık yapıların gerçeğe yakın analizlerinde ve tasarım optimizasyonu çalışmalarında kullanılan bir sayısal yöntemdir. Havacılık, otomotiv, savunma ve inşaat sektörleri gibi birçok endüstride yaygın olarak kullanılmaktadır. Bu çalışma daha az sayıda düğüm noktası kullanarak bir çift bindirmeli yapışma bağındaki gerilme dağılımını hesaplamayı amaçlamaktadır. Bu kapsamda yapışma bağlantısının statik yükleme analizleri farklı modelleme yaklaşımları ile analiz edilmiştir. Öncelikle yakınsama analizi yapılarak eleman sayısının etkisi incelenmiştir. Sonuçlar doğrultusunda tek boyutlu, iki boyutlu, üç boyutlu ve hibrit eleman yaklaşımlarını içeren 5 farklı model aynı sınır koşulu ve yükleme durumu için karşılaştırılmıştır. Sonuç olarak, 50 kat daha az sayıda düğüm noktası kullanarak gerilme dağılımları %2,6 bağıl fark ile benzer hesaplanmıştır.

Kaynakça

  • Adams, R. D., J. Coppendale, and N. A. Peppiatt. (1978). “Stress Analysis of Axisymmetric Butt Joints Loaded in Torsion and Tension.” The Journal of Strain Analysis for Engineering Design 13(1):1–10. doi: 10.1243/03093247V131001.
  • Adams, R. D., and N. A. Peppiatt. (1977). “Stress Analysis of Adhesive Bonded Tubular Lap Joints.” The Journal of Adhesion 9(1):1–18. doi: 10.1080/00218467708075095.
  • Al-Ramahi, Nawres J., Roberts Joffe, and Janis Varna. (2019). “Numerical Stress Analysis in Adhesive Joints under Thermo-Mechanical Load Using Model with Special Boundary Conditions.” IOP Conference Series: Materials Science and Engineering 518(3):032061. doi: 10.1088/1757-899X/518/3/032061.
  • Altair Engineering Inc. 2021-a. “CBEAM.” Retrieved January 1, 2024 (https://2021.help.altair.com/2021/hwsolvers/os/topics/solvers/os/cbeam_bulk_r.htm).
  • Altair Engineering Inc. 2021-b. “MAT1.” Retrieved December 26, 2023 (https://2021.help.altair.com/2021/hwsolvers/os/topics/solvers/os/mat1_bulk_r.htm).
  • Andruet, Raul H., David A. Dillard, and Siegfried M. Holzer. (2001). “Two- and Three-Dimensional Geometrical Nonlinear Finite Elements for Analysis of Adhesive Joints.” International Journal of Adhesion and Adhesives 21(1):17–34. doi: 10.1016/S0143-7496(00)00024-5.
  • Apalak, M. Kemal, Recep Ekici, and Mustafa Yildirim. (2008). “Free Vibration Analysis and Optimal Design of an Adhesively Bonded Double Containment Cantilever Joint.”
  • Apalak, M. Kemal, and Mustafa Yildirim. (2007). “Optimal Vibration Attenuation of an Adhesively-Bonded Cantilevered Single-Lap Joint.” Journal of Adhesion Science and Technology 21(3–4):267–86. doi: 10.1163/156856107780684639.
  • ASTM. n.d. “Adhesive Standards.” Retrieved December 26, 2023 (https://www.astm.org/products-services/standards-and-publications/standards/adhesive-standards.html).
  • Aydın, Murat Demir, Şemsettın Temiz, and Adnan Özel. (2007). “Effect of Curing Pressure on the Strength of Adhesively Bonded Joints.” The Journal of Adhesion 83(6):553–71. doi: 10.1080/00218460701453536.
  • Banea, M. D., M. Rosioara, R. J. C. Carbas, and L. F. M. da Silva. (2018). “Multi-Material Adhesive Joints for Automotive Industry.” Composites Part B: Engineering 151:71–77. doi: 10.1016/j.compositesb.2018.06.009.
  • Banea, M. D., and L. F. M. da Silva. (2009). “Adhesively Bonded Joints in Composite Materials: An Overview.” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 223(1):1–18. doi: 10.1243/14644207JMDA219.
  • Chang, Kuang-Hua. (2015). “Chapter 7-Structural Analysis.” E-Design 325–90. Dean, G. D., and L. E. Crocker. (2023). “The Use of Finite Element Methods for Design with Adhesives.”
  • FEICA - European Association of the Adhesive and Sealant Industry. n.d. “History of Bondingand Adhesives.” Retrieved January 1, 2024 (https://www.feica.eu/).
  • García, J. A., A. Chiminelli, B. García, M. Lizaranzu, and M. A. Jiménez. (2011). “Characterization and Material Model Definition of Toughened Adhesives for Finite Element Analysis.” International Journal of Adhesion and Adhesives 31(4):182–92. doi: 10.1016/j.ijadhadh.2010.12.006.
  • Grant, L. D. R., R. D. Adams, and Lucas F. M. da Silva. (2009). “Effect of the Temperature on the Strength of Adhesively Bonded Single Lap and T Joints for the Automotive Industry.” International Journal of Adhesion and Adhesives 29(5):535–42. doi: 10.1016/j.ijadhadh.2009.01.002.
  • Guo, Shu, David A. Dillard, and Raymond H. Plaut. (2006). “Effect of Boundary Conditions and Spacers on Single-Lap Joints Loaded in Tension or Compression.” International Journal of Adhesion and Adhesives 26(8):629–38. doi: 10.1016/j.ijadhadh.2005.09.005.
  • Günay, D. (1993). Mühendisler için sonlu elemanlar metodunun temelleri. Sakarya Üniversitesi.
  • Hadavinia, H., L. Kawashita, A. J. Kinloch, D. R. Moore, and J. G. Williams. (2006). “A Numerical Analysis of the Elastic-Plastic Peel Test.” Engineering Fracture Mechanics 73(16):2324–35. doi: 10.1016/j.engfracmech.2006.04.022.
  • He, Xiaocong. (2011). “A Review of Finite Element Analysis of Adhesively Bonded Joints.” International Journal of Adhesion and Adhesives 31(4):248–64. doi: 10.1016/j.ijadhadh.2011.01.006.
  • He, Xiaocong. (2014). “Influence of Boundary Conditions on Stress Distributions in a Single-Lap Adhesively Bonded Joint.” International Journal of Adhesion and Adhesives 53:34–43. doi: 10.1016/j.ijadhadh.2014.01.009.
  • Hibbeler, R. C., and K. H. Tan. (2006). Structural Analysis. Upper Saddle River: Pearson Prentice Hall.
  • Ishai, O., D. Peretz, and S. Gali. (1977). “Direct Determination of Interlaminar Stresses in Polymeric Adhesive Layer.” Experimental Mechanics 17:265–70. doi: https://doi.org/10.1007/BF02324841.
  • Kadioglu, F., R. D. Adams, and F. J. Guild. (2000). “The Shear Stress–Strain Behaviour of Low-Modulus Structural Adhesives.” The Journal of Adhesion 73(2–3):117–33. doi: 10.1080/00218460008029302.
  • Kaufman, J. G. (2000). Introduction to aluminum alloys and tempers. ASM International, Metals Park, OH
  • Liljedahl, C. D. M., A. D. Crocombe, M. A. Wahab, and I. A. Ashcroft. (2006). “Modelling the Environmental Degradation of the Interface in Adhesively Bonded Joints Using a Cohesive Zone Approach.” The Journal of Adhesion 82(11):1061–89. doi: 10.1080/00218460600948495.
  • Logan, Daryl L. (2002). A First Course in the Finite Element Method. Vol. 4. Thomson.
  • Loureiro, A. L., Lucas F. M. da Silva, Chiaki Sato, and M. A. V. Figueiredo. (2010). “Comparison of the Mechanical Behaviour Between Stiff and Flexible Adhesive Joints for the Automotive Industry.” The Journal of Adhesion 86(7):765–87. doi: 10.1080/00218464.2010.482440.
  • Pereira, A. M., J. M. Ferreira, F. V. Antunes, and P. J. Bártolo. (2009). “Study on the Fatigue Strength of AA 6082-T6 Adhesive Lap Joints.” International Journal of Adhesion and Adhesives 29(6):633–38. doi: 10.1016/j.ijadhadh.2009.02.009.
  • Pereira, A. M., J. M. Ferreira, F. V. Antunes, and P. J. Bártolo. (2010). “Analysis of Manufacturing Parameters on the Shear Strength of Aluminium Adhesive Single-Lap Joints.” Journal of Materials Processing Technology 210(4):610–17. doi: 10.1016/j.jmatprotec.2009.11.006.
  • Rice, Richard C., R. Goode, J. Bakuckas, and S. Thompson. (2003). “Development of MMPDS Handbook Aircraft Design Allowables.” in 7th Joint DOD/FAA/NASA Conference on Aging Aircraft.
  • da Silva, Lucas F. M., Paulo J. C. das Neves, R. D. Adams, and J. K. Spelt. (2009). “Analytical Models of Adhesively Bonded Joints—Part I: Literature Survey.” International Journal of Adhesion and Adhesives 29(3):319–30. doi: 10.1016/j.ijadhadh.2008.06.005.
  • Tajally, Mohammad, and Esmaeil Emadoddin. (2011). “Mechanical and Anisotropic Behaviors of 7075 Aluminum Alloy Sheets.” Materials & Design 32(3):1594–99. doi: 10.1016/j.matdes.2010.09.001.
  • Tomblin, John, Waruna Seneviratne, Paulo Escobar, and Yap Yoon-Khian. (2002). “Shear Stress-Strain Data for Structural Adhesives.” US Department of Transportation Federal Aviation Administration Office of Aviation Research, Washington, DC, Rapport Technique DOT/FAA/AR-02/97.
  • Vaidya, Uday K., Abhay R. S. Gautam, Mahesh Hosur, and Piyush Dutta. (2006). “Experimental–Numerical Studies of Transverse Impact Response of Adhesively Bonded Lap Joints in Composite Structures.” International Journal of Adhesion and Adhesives 26(3):184–98. doi: 10.1016/j.ijadhadh.2005.03.013.
  • Wang, J., A. N. Rider, M. Heller, and R. Kaye. (2005). “Theoretical and Experimental Research into Optimal Edge Taper of Bonded Repair Patches Subject to Fatigue Loadings.” International Journal of Adhesion and Adhesives 25(5):410–26. doi: 10.1016/j.ijadhadh.2004.11.007.
  • Wang, Jialai, and Chao Zhang. (2009). “Energy Release Rate and Phase Angle of Delamination in Sandwich Beams and Symmetric Adhesively Bonded Joints.” International Journal of Solids and Structures 46(25–26):4409–18. doi: 10.1016/j.ijsolstr.2009.09.003.
  • Yoon, Jeong-Whan, Frédéric Barlat, Robert E. Dick, Kwansoo Chung, and Tae Jin Kang. (2004). “Plane Stress Yield Function for Aluminum Alloy Sheets—Part II: FE Formulation and Its Implementation.” International Journal of Plasticity 20(3):495–522. doi: 10.1016/S0749-6419(03)00099-8.
  • Zhang, Ye, Anastasios P. Vassilopoulos, and Thomas Keller. (2010). “Effects of Low and High Temperatures on Tensile Behavior of Adhesively-Bonded GFRP Joints.” Composite Structures 92(7):1631–39. doi: 10.1016/j.compstruct.2009.11.028.
  • Zhao, Bo, and Zhen-Hua Lu. (2009). “A Two-Dimensional Approach of Single-Lap Adhesive Bonded Joints.” Mechanics of Advanced Materials and Structures 16(2):130–59. doi: 10.1080/15376490802625464.
  • Zhao, X., R. D. Adams, and L. F. M. da Silva. 2011a. “Single Lap Joints with Rounded Adherend Corners: Experimental Results and Strength Prediction.” Journal of Adhesion Science and Technology 25(8):837–56. doi: 10.1163/016942410X520880.
  • Zhao, X., R. D. Adams, and L. F. M. da Silva. 2011b. “Single Lap Joints with Rounded Adherend Corners: Stress and Strain Analysis.” Journal of Adhesion Science and Technology 25(8):819–36. doi: 10.1163/016942410X520871.
  • Zhao, X., R. D. Adams, and Lucas F. M. da Silva. (2010). “A New Method for the Determination of Bending Moments in Single Lap Joints.” International Journal of Adhesion and Adhesives 30(2):63–71. doi: 10.1016/j.ijadhadh.2009.09.001.

COMPARATIVE FINITE ELEMENT ANALYSIS OF STATICALLY LOADED ADHESIVELY BONDED METALLIC STRUCTURES USING DIFFERENT MODELLING APPROACHES

Yıl 2024, , 763 - 778, 03.09.2024
https://doi.org/10.17780/ksujes.1419319

Öz

Adhesion joints stand out with advantages such as lightness, aesthetic final product, vibration damping, material diversity, and easy use. One of the methods used to calculate load distribution and strength of the adhesive bond is the finite element method. The finite element method is a numerical method used in solving engineering problems, realistic analysis of complex structures, and design optimization studies. It is widely used in many industries such as aerospace, automotive, defense, and civil engineering. This study aims to calculate the stress distribution in a double-lap adhesive bond using fewer finite elements and nodes. In this scope, static loading analyses of the adhesion joint have been analyzed with different modeling approaches. First, convergence analysis has been performed. Next, 5 different models including approaches that use one-dimensional, two-dimensional, three- dimensional, and hybrid elements have been compared for the same boundary and loading condition. Finally, by using a 50 times reduced number of nodes, stress distributions have been calculated similarly with a relative difference of 2.6%.

Kaynakça

  • Adams, R. D., J. Coppendale, and N. A. Peppiatt. (1978). “Stress Analysis of Axisymmetric Butt Joints Loaded in Torsion and Tension.” The Journal of Strain Analysis for Engineering Design 13(1):1–10. doi: 10.1243/03093247V131001.
  • Adams, R. D., and N. A. Peppiatt. (1977). “Stress Analysis of Adhesive Bonded Tubular Lap Joints.” The Journal of Adhesion 9(1):1–18. doi: 10.1080/00218467708075095.
  • Al-Ramahi, Nawres J., Roberts Joffe, and Janis Varna. (2019). “Numerical Stress Analysis in Adhesive Joints under Thermo-Mechanical Load Using Model with Special Boundary Conditions.” IOP Conference Series: Materials Science and Engineering 518(3):032061. doi: 10.1088/1757-899X/518/3/032061.
  • Altair Engineering Inc. 2021-a. “CBEAM.” Retrieved January 1, 2024 (https://2021.help.altair.com/2021/hwsolvers/os/topics/solvers/os/cbeam_bulk_r.htm).
  • Altair Engineering Inc. 2021-b. “MAT1.” Retrieved December 26, 2023 (https://2021.help.altair.com/2021/hwsolvers/os/topics/solvers/os/mat1_bulk_r.htm).
  • Andruet, Raul H., David A. Dillard, and Siegfried M. Holzer. (2001). “Two- and Three-Dimensional Geometrical Nonlinear Finite Elements for Analysis of Adhesive Joints.” International Journal of Adhesion and Adhesives 21(1):17–34. doi: 10.1016/S0143-7496(00)00024-5.
  • Apalak, M. Kemal, Recep Ekici, and Mustafa Yildirim. (2008). “Free Vibration Analysis and Optimal Design of an Adhesively Bonded Double Containment Cantilever Joint.”
  • Apalak, M. Kemal, and Mustafa Yildirim. (2007). “Optimal Vibration Attenuation of an Adhesively-Bonded Cantilevered Single-Lap Joint.” Journal of Adhesion Science and Technology 21(3–4):267–86. doi: 10.1163/156856107780684639.
  • ASTM. n.d. “Adhesive Standards.” Retrieved December 26, 2023 (https://www.astm.org/products-services/standards-and-publications/standards/adhesive-standards.html).
  • Aydın, Murat Demir, Şemsettın Temiz, and Adnan Özel. (2007). “Effect of Curing Pressure on the Strength of Adhesively Bonded Joints.” The Journal of Adhesion 83(6):553–71. doi: 10.1080/00218460701453536.
  • Banea, M. D., M. Rosioara, R. J. C. Carbas, and L. F. M. da Silva. (2018). “Multi-Material Adhesive Joints for Automotive Industry.” Composites Part B: Engineering 151:71–77. doi: 10.1016/j.compositesb.2018.06.009.
  • Banea, M. D., and L. F. M. da Silva. (2009). “Adhesively Bonded Joints in Composite Materials: An Overview.” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 223(1):1–18. doi: 10.1243/14644207JMDA219.
  • Chang, Kuang-Hua. (2015). “Chapter 7-Structural Analysis.” E-Design 325–90. Dean, G. D., and L. E. Crocker. (2023). “The Use of Finite Element Methods for Design with Adhesives.”
  • FEICA - European Association of the Adhesive and Sealant Industry. n.d. “History of Bondingand Adhesives.” Retrieved January 1, 2024 (https://www.feica.eu/).
  • García, J. A., A. Chiminelli, B. García, M. Lizaranzu, and M. A. Jiménez. (2011). “Characterization and Material Model Definition of Toughened Adhesives for Finite Element Analysis.” International Journal of Adhesion and Adhesives 31(4):182–92. doi: 10.1016/j.ijadhadh.2010.12.006.
  • Grant, L. D. R., R. D. Adams, and Lucas F. M. da Silva. (2009). “Effect of the Temperature on the Strength of Adhesively Bonded Single Lap and T Joints for the Automotive Industry.” International Journal of Adhesion and Adhesives 29(5):535–42. doi: 10.1016/j.ijadhadh.2009.01.002.
  • Guo, Shu, David A. Dillard, and Raymond H. Plaut. (2006). “Effect of Boundary Conditions and Spacers on Single-Lap Joints Loaded in Tension or Compression.” International Journal of Adhesion and Adhesives 26(8):629–38. doi: 10.1016/j.ijadhadh.2005.09.005.
  • Günay, D. (1993). Mühendisler için sonlu elemanlar metodunun temelleri. Sakarya Üniversitesi.
  • Hadavinia, H., L. Kawashita, A. J. Kinloch, D. R. Moore, and J. G. Williams. (2006). “A Numerical Analysis of the Elastic-Plastic Peel Test.” Engineering Fracture Mechanics 73(16):2324–35. doi: 10.1016/j.engfracmech.2006.04.022.
  • He, Xiaocong. (2011). “A Review of Finite Element Analysis of Adhesively Bonded Joints.” International Journal of Adhesion and Adhesives 31(4):248–64. doi: 10.1016/j.ijadhadh.2011.01.006.
  • He, Xiaocong. (2014). “Influence of Boundary Conditions on Stress Distributions in a Single-Lap Adhesively Bonded Joint.” International Journal of Adhesion and Adhesives 53:34–43. doi: 10.1016/j.ijadhadh.2014.01.009.
  • Hibbeler, R. C., and K. H. Tan. (2006). Structural Analysis. Upper Saddle River: Pearson Prentice Hall.
  • Ishai, O., D. Peretz, and S. Gali. (1977). “Direct Determination of Interlaminar Stresses in Polymeric Adhesive Layer.” Experimental Mechanics 17:265–70. doi: https://doi.org/10.1007/BF02324841.
  • Kadioglu, F., R. D. Adams, and F. J. Guild. (2000). “The Shear Stress–Strain Behaviour of Low-Modulus Structural Adhesives.” The Journal of Adhesion 73(2–3):117–33. doi: 10.1080/00218460008029302.
  • Kaufman, J. G. (2000). Introduction to aluminum alloys and tempers. ASM International, Metals Park, OH
  • Liljedahl, C. D. M., A. D. Crocombe, M. A. Wahab, and I. A. Ashcroft. (2006). “Modelling the Environmental Degradation of the Interface in Adhesively Bonded Joints Using a Cohesive Zone Approach.” The Journal of Adhesion 82(11):1061–89. doi: 10.1080/00218460600948495.
  • Logan, Daryl L. (2002). A First Course in the Finite Element Method. Vol. 4. Thomson.
  • Loureiro, A. L., Lucas F. M. da Silva, Chiaki Sato, and M. A. V. Figueiredo. (2010). “Comparison of the Mechanical Behaviour Between Stiff and Flexible Adhesive Joints for the Automotive Industry.” The Journal of Adhesion 86(7):765–87. doi: 10.1080/00218464.2010.482440.
  • Pereira, A. M., J. M. Ferreira, F. V. Antunes, and P. J. Bártolo. (2009). “Study on the Fatigue Strength of AA 6082-T6 Adhesive Lap Joints.” International Journal of Adhesion and Adhesives 29(6):633–38. doi: 10.1016/j.ijadhadh.2009.02.009.
  • Pereira, A. M., J. M. Ferreira, F. V. Antunes, and P. J. Bártolo. (2010). “Analysis of Manufacturing Parameters on the Shear Strength of Aluminium Adhesive Single-Lap Joints.” Journal of Materials Processing Technology 210(4):610–17. doi: 10.1016/j.jmatprotec.2009.11.006.
  • Rice, Richard C., R. Goode, J. Bakuckas, and S. Thompson. (2003). “Development of MMPDS Handbook Aircraft Design Allowables.” in 7th Joint DOD/FAA/NASA Conference on Aging Aircraft.
  • da Silva, Lucas F. M., Paulo J. C. das Neves, R. D. Adams, and J. K. Spelt. (2009). “Analytical Models of Adhesively Bonded Joints—Part I: Literature Survey.” International Journal of Adhesion and Adhesives 29(3):319–30. doi: 10.1016/j.ijadhadh.2008.06.005.
  • Tajally, Mohammad, and Esmaeil Emadoddin. (2011). “Mechanical and Anisotropic Behaviors of 7075 Aluminum Alloy Sheets.” Materials & Design 32(3):1594–99. doi: 10.1016/j.matdes.2010.09.001.
  • Tomblin, John, Waruna Seneviratne, Paulo Escobar, and Yap Yoon-Khian. (2002). “Shear Stress-Strain Data for Structural Adhesives.” US Department of Transportation Federal Aviation Administration Office of Aviation Research, Washington, DC, Rapport Technique DOT/FAA/AR-02/97.
  • Vaidya, Uday K., Abhay R. S. Gautam, Mahesh Hosur, and Piyush Dutta. (2006). “Experimental–Numerical Studies of Transverse Impact Response of Adhesively Bonded Lap Joints in Composite Structures.” International Journal of Adhesion and Adhesives 26(3):184–98. doi: 10.1016/j.ijadhadh.2005.03.013.
  • Wang, J., A. N. Rider, M. Heller, and R. Kaye. (2005). “Theoretical and Experimental Research into Optimal Edge Taper of Bonded Repair Patches Subject to Fatigue Loadings.” International Journal of Adhesion and Adhesives 25(5):410–26. doi: 10.1016/j.ijadhadh.2004.11.007.
  • Wang, Jialai, and Chao Zhang. (2009). “Energy Release Rate and Phase Angle of Delamination in Sandwich Beams and Symmetric Adhesively Bonded Joints.” International Journal of Solids and Structures 46(25–26):4409–18. doi: 10.1016/j.ijsolstr.2009.09.003.
  • Yoon, Jeong-Whan, Frédéric Barlat, Robert E. Dick, Kwansoo Chung, and Tae Jin Kang. (2004). “Plane Stress Yield Function for Aluminum Alloy Sheets—Part II: FE Formulation and Its Implementation.” International Journal of Plasticity 20(3):495–522. doi: 10.1016/S0749-6419(03)00099-8.
  • Zhang, Ye, Anastasios P. Vassilopoulos, and Thomas Keller. (2010). “Effects of Low and High Temperatures on Tensile Behavior of Adhesively-Bonded GFRP Joints.” Composite Structures 92(7):1631–39. doi: 10.1016/j.compstruct.2009.11.028.
  • Zhao, Bo, and Zhen-Hua Lu. (2009). “A Two-Dimensional Approach of Single-Lap Adhesive Bonded Joints.” Mechanics of Advanced Materials and Structures 16(2):130–59. doi: 10.1080/15376490802625464.
  • Zhao, X., R. D. Adams, and L. F. M. da Silva. 2011a. “Single Lap Joints with Rounded Adherend Corners: Experimental Results and Strength Prediction.” Journal of Adhesion Science and Technology 25(8):837–56. doi: 10.1163/016942410X520880.
  • Zhao, X., R. D. Adams, and L. F. M. da Silva. 2011b. “Single Lap Joints with Rounded Adherend Corners: Stress and Strain Analysis.” Journal of Adhesion Science and Technology 25(8):819–36. doi: 10.1163/016942410X520871.
  • Zhao, X., R. D. Adams, and Lucas F. M. da Silva. (2010). “A New Method for the Determination of Bending Moments in Single Lap Joints.” International Journal of Adhesion and Adhesives 30(2):63–71. doi: 10.1016/j.ijadhadh.2009.09.001.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliğinde Sayısal Yöntemler, Malzeme Tasarım ve Davranışları, Makine Mühendisliği (Diğer)
Bölüm Makine Mühendisliği
Yazarlar

Faik Fatih Korkmaz 0000-0003-3664-0328

Kadir Çavdar 0000-0001-9126-0315

Yayımlanma Tarihi 3 Eylül 2024
Gönderilme Tarihi 14 Ocak 2024
Kabul Tarihi 26 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Korkmaz, F. F., & Çavdar, K. (2024). METALLERİN YAPIŞTIRMA BAĞLANTILARININ FARKLI MODELLEME YAKLAŞIMLARI KULLANARAK SONLU ELEMANLAR YÖNTEMİ İLE KARŞILAŞTIRMALI STATİK YÜKLEME ANALİZİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 763-778. https://doi.org/10.17780/ksujes.1419319