Araştırma Makalesi
BibTex RIS Kaynak Göster

FLOW AND HEAT TRANSFER IN ELLIPSE-SHAPED TUBE BANK HEAT EXCHANGERS

Yıl 2024, , 1602 - 1620, 03.12.2024
https://doi.org/10.17780/ksujes.1484291

Öz

In this study, flow and heat transfer performance of tube bank with staggered arrangement is numerically investigated for circular, elliptical and combined circular and elliptical shaped tubes. The flow is assumed to be two-dimensional, incompressible, steady and turbulent. Heat transfer surface areas are assumed to be equal for the studied geometries and the equivalent diameter is taken as D_e=16,4 mm. Air was used as the working fluid and the tube bank inlet velocity (V_g) was varied between 1 m/s and 6 m/s. It was found that at V_g=6 m/s, the pressure drop and heat transfer for the elliptical tube bank were 75.19% and 18.14% less than the circular one, respectively, corresponding to a thermal efficiency increase of 230.08%.

Proje Numarası

121C377 ve 123M484

Kaynakça

  • Akcay, S., Akdağ, Ü., Hacıhafızoğu, O., & Demiral, D. (2019). Boru demeti üzerinden geçen Al2O3- su nanoakışkanın pulsatif akışının ısı transferine etkisi. DÜMF Mühendislik Dergisi, 10(2), 621–631. https://doi.org/10.24012/dumf.435490
  • Aslan, E., Taymaz, I., Cakir, K., & Eker Kahveci, E. (2023). Numerical and experimental investigation of tube bundle heat exchanger arrangement effect on heat transfer performance in turbulent flows. Isı Bilimi ve Tekniği Dergisi, 43(2), 175–190. https://doi.org/10.47480/isibted.1391408
  • Bahaidarah, H. M. S., Anand, N. K., & Chen, H. C. (2005). A numerical study of fluid flow and heat transfer over a bank of flat tubes. Numerical Heat Transfer; Part A: Applications, 48(4), 359–385. https://doi.org/10.1080/10407780590957134
  • Bayat, H., Lavasani, A. M., & Maarefdoost, T. (2014). Experimental study of thermal-hydraulic performance of cam-shaped tube bundle with staggered arrangement. Energy Conversion and Management, 85, 470–476. https://doi.org/10.1016/j.enconman.2014.06.009
  • Buyruk, E., & Fertelli, A. (2001). Theoretical study for determination of the heat transfer and flow characteristics in the staggered tube bundle. DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 3(2), 59–69.
  • El-Shaboury, A. M. F., & Ormiston, S. J. (2005). Analysis of laminar forced convection of air crossflow in in-line tube banks with nonsquare arrangements. Numerical Heat Transfer; Part A: Applications, 48(2), 99–126. https://doi.org/10.1080/10407780590945452
  • Erguvan, M., & MacPhee, D. W. (2019). Second law optimization of heat exchangers in waste heat recovery. International Journal of Energy Research, 43(11), 5714–5734. https://doi.org/10.1002/er.4664
  • Fluent, A. (2021). ANSYS Fluent theory guide. In ANSYS Inc., USA.
  • Horvat, A., Leskovar, M., & Mavko, B. (2006). Comparison of heat transfer conditions in tube bundle cross-flow for different tube shapes. International Journal of Heat and Mass Transfer, 49(5–6), 1027–1038. https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.030
  • Ibrahim, T. A., & Gomaa, A. (2009). Thermal performance criteria of elliptic tube bundle in crossflow. International Journal of Thermal Sciences, 48(11), 2148–2158. https://doi.org/10.1016/j.ijthermalsci.2009.03.011
  • Incropera, F.P., DeWitt, D.P. (2002). Introduction to Heat Transfer. In John Wiley and Sons Inc, New York.
  • Khan, W. A., Culham, J. R., & Yovanovich, M. M. (2004). Fluid flow and heat transfer from elliptical cylinders: Analytical approach. 37th AIAA Thermophysics Conference, 19(2). https://doi.org/10.2514/6.2004-2272
  • Khan, W. A., Culham, J. R., & Yovanovich, M. M. (2006). Convection heat transfer from tube banks in crossflow: Analytical approach. International Journal of Heat and Mass Transfer, 49(25–26), 4831–4838. https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.042
  • Lavasani, A. M., & Bayat, H. (2016). Numerical study of pressure drop and heat transfer from circular and cam-shaped tube bank in cross-flow of nanofluid. Energy Conversion and Management, 129, 319–328. https://doi.org/10.1016/j.enconman.2016.10.029
  • Mangrulkar, C. K., Dhoble, A. S., Chakrabarty, S. G., and Wankhede U. S. (2016). “Experimental and CFD prediction of heat transfer and friction factor characteristics in cross flow tube bank with integral splitter plate,” International Journal of Heat and Mass Transfer, 104, 964–978. https://doi: 10.1016/j.ijheatmasstransfer.2016.09.013.
  • Mangrulkar, C. K., Dhoble, A. S., Deshmukh, A. R., & Mandavgane, S. A. (2017). Numerical investigation of heat transfer and friction factor characteristics from in-line cam shaped tube bank in crossflow. Applied Thermal Engineering, 110, 521–538. https://doi.org/10.1016/j.applthermaleng.2016.08.174
  • Mangrulkar, C. K., Dhoble, A. S., Pant, P. K., Kumar, N., Gupta, A., & Chamoli, S. (2020). Thermal performance escalation of cross flow heat exchanger using in-line elliptical tubes. Experimental Heat Transfer, 33(7), 587–https://doi.org/10.1080/08916152.2019.1704946
  • Yilmaz, A., Yilmaz, T., (2016). Çapraz akışlı paralel borulu boru demetinde entropi üretiminin analitik ve deneysel olarak incelenmesi. Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 31(1), 223–230.
  • Žukauskas, A. (1972). Heat transfer from tubes in crossflow. Advances in Heat Transfer, 8(C), 93–160. https://doi.org/10.1016/S0065-2717(08)70038-8

ELİPS ŞEKİLLİ BORU DEMETİ ISI DEĞİŞTİRİCİSİNDE AKIŞ VE ISI TRANSFERİ

Yıl 2024, , 1602 - 1620, 03.12.2024
https://doi.org/10.17780/ksujes.1484291

Öz

Bu çalışmada, kaydırılmış sıralı dizilişe sahip boru demetinde dairesel, elips ve dairesel ile elips şekilli boruların birlikte kullanıldığı durumlar için akış ve ısı transferi performansı sayısal olarak incelenmiştir. Akış, iki boyutlu, sıkıştırılamaz, kararlı ve türbülanslı varsayılmıştır. İncelenen geometriler için ısı transferi yüzey alanları eşit kabul edilerek eşdeğer çap D_e=16,4 mm olarak alınmıştır. Akışkan olarak hava kullanılmış ve boru demeti giriş hızı (V_g), 1 m/s ile 6 m/s aralığında değiştirilmiştir. V_g=6 m/s’de, elips şekilli boru demeti için basınç düşümü ve ısı transferinin dairesel şekilli olana göre, sırasıyla, %75,19 ve %18,14 daha az olduğu ve bu durumun da %230,08’lik bir ısıl verim artışına karşılık geldiği belirlenmiştir.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

121C377 ve 123M484

Teşekkür

Bu çalışma, TÜBİTAK BİDEB 2218 Yurtiçi Doktora Sonrası Araştırma Burs Programı tarafından 121C377 proje numarası ile ve TÜBİTAK ARDEB 1001 Araştırma Programı tarafından 123M484 proje numarası ile desteklenmektedir.

Kaynakça

  • Akcay, S., Akdağ, Ü., Hacıhafızoğu, O., & Demiral, D. (2019). Boru demeti üzerinden geçen Al2O3- su nanoakışkanın pulsatif akışının ısı transferine etkisi. DÜMF Mühendislik Dergisi, 10(2), 621–631. https://doi.org/10.24012/dumf.435490
  • Aslan, E., Taymaz, I., Cakir, K., & Eker Kahveci, E. (2023). Numerical and experimental investigation of tube bundle heat exchanger arrangement effect on heat transfer performance in turbulent flows. Isı Bilimi ve Tekniği Dergisi, 43(2), 175–190. https://doi.org/10.47480/isibted.1391408
  • Bahaidarah, H. M. S., Anand, N. K., & Chen, H. C. (2005). A numerical study of fluid flow and heat transfer over a bank of flat tubes. Numerical Heat Transfer; Part A: Applications, 48(4), 359–385. https://doi.org/10.1080/10407780590957134
  • Bayat, H., Lavasani, A. M., & Maarefdoost, T. (2014). Experimental study of thermal-hydraulic performance of cam-shaped tube bundle with staggered arrangement. Energy Conversion and Management, 85, 470–476. https://doi.org/10.1016/j.enconman.2014.06.009
  • Buyruk, E., & Fertelli, A. (2001). Theoretical study for determination of the heat transfer and flow characteristics in the staggered tube bundle. DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 3(2), 59–69.
  • El-Shaboury, A. M. F., & Ormiston, S. J. (2005). Analysis of laminar forced convection of air crossflow in in-line tube banks with nonsquare arrangements. Numerical Heat Transfer; Part A: Applications, 48(2), 99–126. https://doi.org/10.1080/10407780590945452
  • Erguvan, M., & MacPhee, D. W. (2019). Second law optimization of heat exchangers in waste heat recovery. International Journal of Energy Research, 43(11), 5714–5734. https://doi.org/10.1002/er.4664
  • Fluent, A. (2021). ANSYS Fluent theory guide. In ANSYS Inc., USA.
  • Horvat, A., Leskovar, M., & Mavko, B. (2006). Comparison of heat transfer conditions in tube bundle cross-flow for different tube shapes. International Journal of Heat and Mass Transfer, 49(5–6), 1027–1038. https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.030
  • Ibrahim, T. A., & Gomaa, A. (2009). Thermal performance criteria of elliptic tube bundle in crossflow. International Journal of Thermal Sciences, 48(11), 2148–2158. https://doi.org/10.1016/j.ijthermalsci.2009.03.011
  • Incropera, F.P., DeWitt, D.P. (2002). Introduction to Heat Transfer. In John Wiley and Sons Inc, New York.
  • Khan, W. A., Culham, J. R., & Yovanovich, M. M. (2004). Fluid flow and heat transfer from elliptical cylinders: Analytical approach. 37th AIAA Thermophysics Conference, 19(2). https://doi.org/10.2514/6.2004-2272
  • Khan, W. A., Culham, J. R., & Yovanovich, M. M. (2006). Convection heat transfer from tube banks in crossflow: Analytical approach. International Journal of Heat and Mass Transfer, 49(25–26), 4831–4838. https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.042
  • Lavasani, A. M., & Bayat, H. (2016). Numerical study of pressure drop and heat transfer from circular and cam-shaped tube bank in cross-flow of nanofluid. Energy Conversion and Management, 129, 319–328. https://doi.org/10.1016/j.enconman.2016.10.029
  • Mangrulkar, C. K., Dhoble, A. S., Chakrabarty, S. G., and Wankhede U. S. (2016). “Experimental and CFD prediction of heat transfer and friction factor characteristics in cross flow tube bank with integral splitter plate,” International Journal of Heat and Mass Transfer, 104, 964–978. https://doi: 10.1016/j.ijheatmasstransfer.2016.09.013.
  • Mangrulkar, C. K., Dhoble, A. S., Deshmukh, A. R., & Mandavgane, S. A. (2017). Numerical investigation of heat transfer and friction factor characteristics from in-line cam shaped tube bank in crossflow. Applied Thermal Engineering, 110, 521–538. https://doi.org/10.1016/j.applthermaleng.2016.08.174
  • Mangrulkar, C. K., Dhoble, A. S., Pant, P. K., Kumar, N., Gupta, A., & Chamoli, S. (2020). Thermal performance escalation of cross flow heat exchanger using in-line elliptical tubes. Experimental Heat Transfer, 33(7), 587–https://doi.org/10.1080/08916152.2019.1704946
  • Yilmaz, A., Yilmaz, T., (2016). Çapraz akışlı paralel borulu boru demetinde entropi üretiminin analitik ve deneysel olarak incelenmesi. Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 31(1), 223–230.
  • Žukauskas, A. (1972). Heat transfer from tubes in crossflow. Advances in Heat Transfer, 8(C), 93–160. https://doi.org/10.1016/S0065-2717(08)70038-8
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliğinde Sayısal Yöntemler
Bölüm Makine Mühendisliği
Yazarlar

Muhammet Nasıf Kuru 0000-0002-5941-1221

Mehmet Özkarakoç 0009-0000-0312-6707

Şaban Ünal

Mehmet Tahir Erdinç

İlyas Karasu

Orhan Aydın

Proje Numarası 121C377 ve 123M484
Yayımlanma Tarihi 3 Aralık 2024
Gönderilme Tarihi 15 Mayıs 2024
Kabul Tarihi 11 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Kuru, M. N., Özkarakoç, M., Ünal, Ş., Erdinç, M. T., vd. (2024). ELİPS ŞEKİLLİ BORU DEMETİ ISI DEĞİŞTİRİCİSİNDE AKIŞ VE ISI TRANSFERİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 1602-1620. https://doi.org/10.17780/ksujes.1484291