Araştırma Makalesi
BibTex RIS Kaynak Göster

STABLE MERCURY ISOTOPE FRACTIONATION BEHAVIOURS OF PLANTS

Yıl 2020, , 197 - 208, 03.12.2020
https://doi.org/10.17780/ksujes.757880

Öz

The overarching aim of this study is to define mercury (Hg) isotopic features of plants which have different photosynthetic pathways (C3, C4 and CAM) and to understand if different parts of the plants have different Hg isotopic fractionation behavior. For this, carbon isotopic values of terrestrial plants were analyzed which were used to determine the photosynthetic pathways of plants. Plants were sub-sampled into leaves, stems and roots and their Hg isotopic values were analyzed.
Results showed that C3 and C4 plants exhibit mass dependent (even Hg isotopes) and mass independent Hg isotope fractionation (odd Hg isotopes). Both C3 and C4 plants are enriched in light isotopes, but the degree of mass fractionation is approximately three times greater in C3 plants, than in C4 plants. Hg in both C3 and C4 plants exhibit negative MIF isotope effect which reported as depletion “and no clear MIF effect. These findings suggest a connection between the Hg isotopic composition and the photosynthetic pathway.
In addition, the leaves are slightly more fractionated than the roots. Differences in the degree of MIF between roots and leaves suggest that they obtain Hg from different sources.

Destekleyen Kurum

Milli Eğitim Bakanlığı

Kaynakça

  • Bergquist, B. A., & Blum, J. D. (2007). Mass-Dependent and -Independent Fractionation of Hg Isotopes by Photoreduction in Aquatic Systems. Science, 318(5849), 417 LP – 420. https://doi.org/10.1126/science.1148050 Biswas, A., Blum, J. D., Bergquist, B. A., Keeler, G. J., & Xie, Z. (2008). Natural mercury isotope variation in coal deposits and organic soils. Environmental Science and Technology, 42(22), 8303–8309. https://doi.org/10.1021/es801444b Blum, J. D., Johnson, M. W., Gleason, J. D., Demers, J. D., Landis, M. S., & Krupa, S. (2012). Mercury Concentration and Isotopic Composition of Epiphytic Tree Lichens in the Athabasca Oil Sands Region. In K. E. B. T.-D. in E. S. Percy (Ed.), Alberta Oil Sands (Vol. 11, pp. 373–390). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-08-097760-7.00016-0 Cai, H., & Chen, J. (2016). Mass-independent fractionation of even mercury isotopes. Science Bulletin, 61(2), 116–124. https://doi.org/10.1007/s11434-015-0968-8 Carignan, J., Estrade, N., Sonke, J. E., & Donard, O. F. X. (2009). Odd Isotope Deficits in Atmospheric Hg Measured in Lichens. Environmental Science & Technology, 43(15), 5660–5664. https://doi.org/10.1021/es900578v Das, R., Salters, V. J. M., & Odom, A. L. (2009). A case for in vivo mass-independent fractionation of mercury isotopes in fish. Geochemistry, Geophysics, Geosystems, 10(11), 1–12. https://doi.org/10.1029/2009GC002617 Demers, J. D., Blum, J. D., & Zak, D. R. (2013). Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle. Global Biogeochemical Cycles, 27(1), 222–238. https://doi.org/10.1002/gbc.20021 Donovan, P. M., Blum, J. D., Yee, D., Gehrke, G. E., & Singer, M. B. (2013). An isotopic record of mercury in San Francisco Bay sediment. Chemical Geology, 349–350, 87–98. https://doi.org/10.1016/j.chemgeo.2013.04.017 Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., & Pirrone, N. (2013). Mercury as a Global Pollutant: Sources, Pathways, and E ff ects. Environmental Science & Technology, 47, 4967–4983. Durnford, D., Dastoor, A., Figueras-Nieto, D., & Ryjkov, A. (2010). Long range transport of mercury to the Arctic and across Canada. Atmospheric Chemistry and Physics, 10(13), 6063–6086. https://doi.org/10.5194/acp-10-6063-2010 Foucher, D., Hintelmann, H., Al, T. A., & MacQuarrie, K. T. (2013). Mercury isotope fractionation in waters and sediments of the Murray Brook mine watershed (New Brunswick, Canada): Tracing mercury contamination and transformation. Chemical Geology, 336, 87–95. https://doi.org/10.1016/j.chemgeo.2012.04.014 Gehrke, G. E., Blum, J. D., & Marvin-DiPasquale, M. (2011). Sources of mercury to San Francisco Bay surface sediment as revealed by mercury stable isotopes. Geochimica et Cosmochimica Acta, 75(3), 691–705. https://doi.org/10.1016/j.gca.2010.11.012 Ghosh, S, Xu, Y., Humayun, M., & Odom, L. (2008). Mass-independent fractionation of mercury isotopes in the environment. Geochemistry, Geophysics, Geosystems, 9(3), 1–10. https://doi.org/10.1029/2007GC001827 Ghosh, Sanghamitra, Schauble, E. A., Lacrampe Couloume, G., Blum, J. D., & Bergquist, B. A. (2013). Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid-vapor evaporation experiments. Chemical Geology, 336, 5–12. https://doi.org/10.1016/j.chemgeo.2012.01.008 Ghosh, Sulata. (2010). Itotopic Composition of Mercury in the Atmosphere. Hintelmann, H., & Zheng, W. (2011, November 18). Tracking Geochemical Transformations and Transport of Mercury through Isotope Fractionation. Environmental Chemistry and Toxicology of Mercury. https://doi.org/doi:10.1002/9781118146644.ch9 Jiskra, M., Wiederhold, J. G., Skyllberg, U., Kronberg, R. M., Hajdas, I., & Kretzschmar, R. (2015). Mercury Deposition and Re-emission Pathways in Boreal Forest Soils Investigated with Hg Isotope Signatures. Environmental Science and Technology, 49(12), 7188–7196. https://doi.org/10.1021/acs.est.5b00742 Lamborg, C. H., Fitzgerald, W. F., Damman, A. W. H., Benoit, J. M., Balcom, P. H., & Engstrom, D. R. (2002). Modern and historic atmospheric mercury fluxes in both hemispheres: Global and regional mercury cycling implications. Global Biogeochemical Cycles, 16(4), 51-1-51–11. https://doi.org/10.1029/2001gb001847 Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., … Seigneur, C. (2007). A Synthesis of Progress and Uncertainties in Attributing the Sources of Mercury in Deposition. Source: Ambio, 36(1), 19–32. Pirrone, N., Keeler, G. J., & Nriagu, J. O. (1996). Regional differences in worldwide emissions of mercury to the atmosphere. Atmospheric Environment, 30(17), 2981–2987. https://doi.org/10.1016/1352-2310(95)00498-X Schroeder, H. (1998). Atmospheric Mercury-An Overview. Atmospheric Environment, 32(5). Yin, R., Feng, X., Li, X., Yu, B., & Du, B. (2014). Trends and advances in mercury stable isotopes as a geochemical tracer. Trends in Environmental Analytical Chemistry, 2, 1–10. https://doi.org/10.1016/j.teac.2014.03.001 Yin, R., Feng, X., & Meng, B. (2013). Stable Mercury Isotope Variation in Rice Plants (Oryza sativa L.) from the Wanshan Mercury Mining District, SW China. Environmental Science & Technology, 47(5), 2238–2245. https://doi.org/10.1021/es304302a Yuan, S., Zhang, Y., Chen, J., Kang, S., Zhang, J., Feng, X., … Huang, Q. (2015). Large Variation of Mercury Isotope Composition During a Single Precipitation Event at Lhasa City, Tibetan Plateau, China. Procedia Earth and Planetary Science, 13, 282–286. https://doi.org/10.1016/j.proeps.2015.07.066 Zadnik, M. G., Specht, S., & Begemann, F. (1989). Revised isotopic composition of terrestrial mercury. International Journal of Mass Spectrometry and Ion Processes, 89(1), 103–110. https://doi.org/https://doi.org/10.1016/0168-1176(89)85035-9 Zheng, W., & Hintelmann, H. (2010). Nuclear Field Shift Effect in Isotope Fractionation of Mercury during Abiotic Reduction in the Absence of Light. The Journal of Physical Chemistry A, 114(12), 4238–4245. https://doi.org/10.1021/jp910353y Zheng, W., Obrist, D., Weis, D., & Bergquist, B. A. (2016). Mercury isotope compositions across North American forests. Global Biogeochemical Cycles, 30(10), 1475–1492. https://doi.org/10.1002/2015GB005323
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Jeoloji Mühendisliği
Yazarlar

Ayça Doğrul Selver 0000-0002-9003-5439

Yayımlanma Tarihi 3 Aralık 2020
Gönderilme Tarihi 25 Haziran 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Doğrul Selver, A. (2020). STABLE MERCURY ISOTOPE FRACTIONATION BEHAVIOURS OF PLANTS. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 23(4), 197-208. https://doi.org/10.17780/ksujes.757880