Research Article
BibTex RIS Cite

SİNTERLEME SICAKLIKLARI VE MAGNEZYUM OKSİT İLAVESİNİN HİDROKSİAPATİTİN ÖZELLİKLERİNE ETKİSİ

Year 2021, Volume: 24 Issue: 1, 1 - 14, 03.03.2021
https://doi.org/10.17780/ksujes.774314

Abstract

Bu çalışmada farklı sinterleme sıcaklıkları (900-1300oC) ve farklı oranlardaki magnezyum oksit (MgO; ağırlıkça %0.5, %1 ve %2) ilavelerinin ticari saflıktaki bir hidroksiapatit (HA)’ in mikroyapısal, fiziksel ve mekanik özelliklerine etkileri incelendi. MgO ilavesiz HA’ in basma dayanımı ve kırılma tokluğu özelliklerinin üç ana nedenden dolayı (dekompoze olma, aşırı tane büyümesi ve mikro çatlak oluşumu) 1100oC' nin üzerindeki sıcaklıklarda azaldığı belirlendi. Tüm numunelerde ana faz olarak HA, eser faz olarak ise beta/alfa-trikalsiyum fosfat ve kalsiyum oksit (MgO ilavesiz HA’ te) ile whitlockite (MgO ilaveli HA’ te) tespit edildi. MgO ilavesi ile saf HA’ te meydana gelen tane büyümesinin engellendiği görüldü. Ağırlıkça %1 oranında MgO ilaveli HA’ te ait mikroyapıların, diğerlerine kıyasla daha homojen ve düzgün tanelerden oluştuğu tespit edildi. HA’ e ağırlıkça %0.5 ve %1 oranlarında MgO ilavesinin tüm sıcaklıklarda saf HA’ e ait özelliklerin artmasına katkı sağladığı belirlendi. Poroziteli yapısı nedeniyle, %2 MgO ilaveli HA tüm sinterleme sıcaklıklarında diğerlerinden daha düşük sinterlenebilirliğe ve özelliklere sahip olduğu belirlendi. %1 MgO ilaveli HA’ nin, saf HA’ e oranla %38 oranında daha fazla basma dayanımı (183.25±25.09 MPa) ve %53 oranında daha fazla kırılma tokluğuna (1.472±0.041 MPam1/2) sahip olduğu, ancak düşük kırılma tokluğu nedeniyle insan vücudunda kullanıma uygun olmadığı belirlendi.

References

  • Ahmed A.N., Rawlinson, S., Hill, R.G. (2012). The role of magnesium oxide on thermal properties, structure and bioactivity of bioactive glass coating for dental implants. Journal of Non-Crystalline Solids. 358, 3019-3027.
  • Aminzare, M., Eskandari, A., Baroonian, M.H., Berenov, A., Hesabi, Z.R., Taheri, M., Sadrnezha, S.K. (2013). Hydroxyapatite nanocomposites: Synthesis, sintering and mechanical properties. Ceramics International. 39, 2197-2206.
  • Bellucci, D., Sola, A., Salvatori, R., Anesi, A., Chiarini, L., Cannillo, V. (2017). Role of magnesium oxide and strontium oxide as modifiers in silicate-based bioactive glasses: Effects on thermal behaviour, mechanical properties and in-vitro bioactivity. Materials Science & Engineering C. 72, 566-575.
  • Bodhak, S., Bose, S., Bandyopadhyay, A. (2011). Influence of MgO, SrO, and ZnO Dopants on Electro-Thermal Polarization Behavior and In Vitro Biological Properties of Hydroxyapatite Ceramics. Journal of the American Ceramic Society. 94(4), 1281-1288.
  • Camelia T., Iulian A., Goller, G., Yavas, B., Dan, G., Aurora A., Ion, C., Augustin S., Raiciu, A.D., Ioan C. (2019). The Sintering Behaviour and Mechanical Properties of Hydroxyapatite-Based Composites for Bone Tissue Regeneration. Materiale Plastice. 56(3), 644-648.
  • Catarina C.C., Rita A., Paulo A.Q., S.R. Sousa, F.J. Monteiroa. (2019). Antibacterial bone substitute of hydroxyapatite and magnesium oxide to prevent dental and orthopaedic infections. Materials Science & Engineering C. 97, 529-538.
  • Chun, Y., Ying-kui, G., Mi-lin, Z. (2010). Thermal decomposition and mechanical properties of hydroxyapatite ceramic. Transactions of Nonferrous Metals Society of China. 20, 254-258.
  • Curran, D.J., Fleming, T.J., Towler, M.R., Hampshire, S. (2011). Mechanical parameters of strontium doped hydroxyapatite sintered using microwave and conventional methods. Journal of the Mechanical Behavior of Biomedical Materials. 4, 2063-2073.
  • Demirkol, N. (2017). Bioactivity Properties and Characterization of Commercial Synthetic Hydroxyapatite-5wt.% Niobium (V) Oxide-5 wt.% Magnesium Oxide Composite. Acta Physica Polonica A. 132(3), 786-788.
  • Demirkol, N., Meydanoglu, O., Gokce, H., Oktar, F.N., Kayali, E.S. (2012). Comparison of Mechanical Properties of Sheep Hydroxyapatite (SHA) and Commercial Synthetic Hydroxyapatite (CSHA)-MgO Composites. Key Engineering Materials. 493-494, 588-593.
  • Evis, Z. (2007). Reactions in hydroxylapatite-zirconia composites. Ceramics International. 33, 987-991. Evis, Z., & Doremus, R.H. (2008). Effect of AlF3, CaF2 and MgF2 on hot-pressed hydroxyapatite-nanophase alpha-alumina composites. Materials Research Bulletin. 43 (2008) 2643-2651.
  • Evis, Z., Usta, M., Kutbay, I. (2009). Improvement in sinterability and phase stability of hydroxyapatite and partially stabilized zirconia composites. Journal of the European Ceramic Society. 29 621-628. Falah S.A., & Mohssan, S.N. (2017). Essential Trace Elements and Their Vital Roles in Human Body, Indian Journal of Advances in Chemical Science. 5(3), 127-136.
  • Fathi, M.H., Hanifi, A., Mortazavi, V. (2008). Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. Journal of Materials Processing and Technology. 202, 536-542.
  • Gautam, C.R., Kumar, S., Biradar, S., Josec, S., Mishra, V. K. (2016). Synthesis and enhanced mechanical properties of MgO substituted hydroxyapatite: a bone substitute material. Royal Society of Chemistry Advance. 6, 67565-67574
  • Gogolewski, P., Klimke, J., Krell, A., Beer, P. (2009). Al2O3 tools towards effective machining of wood-based materials. Journal of Materials Processing Technology. 209, 2231-2236.
  • Huang, Q., Chmaissem, O., Capponi, J.J., Chaillout, C., Marezio, M., Tholence, J.L., Santoro, A. (1994). Neutron powder diffraction study of the crystal structure of HgBa2Ca4Cu5O12+δ at room temperature and at 10 K. Physica C: Superconductivity. 227(1-2), 1-9.
  • Hughes, J.M., Jolliff, B.L. and M.E. Gunter. (2006). The atomic arrangement of merrillite from the Fra Mauro Formation, Appllol 143 lunar mission: The first structure of merrillite from the Moon. American Mineralogist, 91, 1547-1552.
  • Joanna K., Agnieszka K., Aneta Z., Anna Ś. (2015). Alpha-tricalcium phosphate synthesized by two different routes: Structural and spectroscopic characterization. Ceramics International. 41, 5727-5733.
  • Kalita, S.M., Bhatt, H.A. (2007). Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization. Materials Science and Engineering C. 27, 837-848.
  • Khalil, K.A., Kim, S.W., Dharmaraj, N., Kim, K.W., Kim, H.Y. (2007). Novel mechanism to improve toughness of the hydroxyapatite bioceramics using high-frequency induction heat sintering. Journal of Materials Processing and Technology. 187-188, 417-420.
  • Kim, S.R., Lee, J.H., Kim, Y.T., Riu, D.H., Jung, S.J., Lee, Y.J., Chung, S.C., Kim, Y.H. (2003). Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. Biomaterials. 24, 1389-1398.
  • Kumar, S., Gautam, C., Chauhan, B.S., Srikrishna, S., Yadav, R.S., Rai, S.B. (2020). Enhanced mechanical properties and hydrophilic behavior of magnesium oxide added hydroxyapatite nanocomposite: A bone substitute material for load bearing applications. Ceramics International. 46, 16235-16248.
  • Liga, S., Kristine S.A., Dmitrijs J., Natalija B., Liga B.C. (2013). The Study of Magnesium Substitution Effect on Physicochemical Properties of Hydroxyapatite. Material Science and Applied Chemistry. 28, 51-57.
  • Liga S., Kristine S.A., Natalija B., Marina S., Dmitrijs J., Liga B.C. (2014). Characterization of Mg-substituted hydroxyapatite synthesized by wet chemical method. Ceramics International. 40, 3261-3267.
  • Lin, F.H., Liao, C.J., Chen, K.S., Sun, J.S., Lin, C.P. (2001). Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water. Biomaterials. 22, 2981-2992.
  • Loreley M.A., Carolina M., Lucia N., Müller, W.D. (2019). Electrochemical deposition of Sr and Sr/Mg-co-substituted hydroxyapatite on Ti-40Nb alloy. Materials Letters. 248, 65-68.
  • Mahraza, Z.A.S., Sahara, M.R., Ghoshala, S.K., Md Saad, A.P., Syahrom, A. (2018). Sol-gel grown MgO-ZnO-tricalcium-phosphate nanobioceramics: Evaluation of mechanical and degradation attributes. Corrosion Science. 138, 179-188.
  • Maroua T., Ibrahim A., Algarni, H., Ayed, F.B., Yousef, E.S. (2019). Mechanical and tribological properties of the tricalcium phosphate-magnesium oxide composites. Materials Science & Engineering C. 96, 716-729.
  • Masatomo Y., Atsushi S., Takashi K., Akinori H. (2003). Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction. Journal of Solid State Chemistry. 175(2), 272-277.
  • Mathai, M., Shozo, T., Structures of Biological Minerals in Dental Research. Journal of Research of the National Institute of Standards and Technology. 106(6), 2001, 1035-1044.
  • Morshed K., Yanling L., Tracy M. (2013). Micro and nano MgO particles for the improvement of fracture toughness of bone-cement interfaces. Journal of Biomechanics. 46, 1035-1039.
  • Nie, J., Zhou, J., Huang, X., Wang, L., Liu, G., Cheng, J. (2019). Effect of TiO2 doping on densification and mechanical properties of hydroxyapatite by microwave sintering. Ceramics International. 45, 13647-13655.
  • Niihara, K. (1985). Indentation microfracture of ceramics-its application and problems. Journal of Ceramic Society of Japan. 20, 12-18.
  • Nikaido, T., Tsuru, K., Munar, M., Maruta, M., Matsuya, S., Nakamura, S., Ishikawa, K. (2015). Fabrication of β-TCP foam: Effects of magnesium oxide as phase stabilizer on its properties. Ceramics International. 41, 14245-14250.
  • Oktar, F.N., Agathopoulos, S., Ozyegin, L.S., Gunduz, O., Demirkol, N., Bozkurt, Y., Salman, S. (2007). Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO2, MgO, Al2O3, and ZrO2. Journal of Materials Science-Materials in Medicine. 18, 2137-2143.
  • Onder, S., Kok, F.N., Kazmanli, K., Urgen, M. (2013). Magnesium substituted hydroxyapatite formation on (Ti, Mg)N coatings produced by cathodic arc PVD techniques. Material Science & Engineering C. 33, 4337-4342.
  • Pazarlioglu, S., & Salman, S. (2017). Sintering effect on the microstructural, mechanical, and in vitro bioactivity properties of a commercially synthetic hydroxyapatite. Journal of The Australian Ceramic Society. 53, 391-401.
  • Pazarlioglu, S. (2019). Hydroxyapatite/Cerium Oxide Composites: Sintering, Microstructural, Mechanical and In-vitro Bioactivity Properties. International Journal of Advance in Engineering and Pure Science. 4, 295-304.
  • Pazarlioglu, S., & Salman, S. a (2019). Effect of lanthanum oxide additive on the sinterability, physical/mechanical, and bioactivity properties of hydroxyapatite-alpha alumina composite. Journal of the Australian Ceramic Society. 55, 1195-1209.
  • Pazarlioglu, S., & Salman, S. b (2019). Effect of yttria on thermal stability, mechanical and in vitro bioactivity properties of hydroxyapatite/alumina composite. Journal of the Ceramic Processing and Research. 20(1), 99-112.
  • Pei, L.Z., Yin, W.Y., Wang, J.F., Chen, J., Fan, C.G., Zhang, Q.F. (2010). Low Temperature Synthesis of Magnesium Oxide and Spinel Powders by a Sol-Gel Process. Materials Research. 13(3), 339-343.
  • Que, W., Khor, K.A., Xu, J.L., Yu, L.G. (2008). Hydroxyapatite/titania nanocomposites derived by combining high-energy ball milling with spark plasma sintering processes. Journal of European Ceramic Society. 28, 3083-3090.
  • Rahmati, M., Fathi, M., Ahmadian, M. (2018). Preparation and structural characterization of bioactive Bredigite (Ca7MgSi4O16) nanopowder. Journal of Alloy and Compounds. 732, 9-15.
  • Reza P., Hassanzadeh-Tabrizi, S.A., Reza, E.-K., Alhaji, A., Abbas, A., Nourbakhsh, A. (2019). Polycrystalline infrared-transparent MgO fabricated by spark plasma sintering. Ceramics International. 45, 18943-18950.
  • Ryu, H.S., Hong, K.S., Lee, J.K., Kim, D.J., Lee, J.H., Chang, B.S., Lee, D., Lee, C.K., Chung, S.S. (2004). Magnesia-doped HA/β-TCP ceramics and evaluation of their biocompatibility. Biomaterials. 25, 393-401.
  • Schroeder, L.W., Dickens, B., Brown, W.E. (1977). Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. II. Refinement of Mg-containing β-Ca3(PO4)2. Journal of Solid State Chemistry. 22(3), 253-262.
  • Sato, K., Yugami, H., Hashida, T. (2004). Effect of rare-earth oxides on fracture properties of ceria ceramics. Journal of Material Science. 39, 5765-5770.
  • Ślósarczyk, A., Piekarczyk, J. (1999) Ceramic materials on the basis of hydroxyapatite and tricalcium phosphate. Ceramics International, 25, 561-565
  • Ślósarczyk, A., Klisch, M., Błaẑewicz, M., Piekarczyk, J., Stobierski, L., Rapacz-Kmita, A. (2000). Hot pressed hydroxyapatite-carbon fibre composites. Journal of the European Ceramic Society. 20, 1397-1402.
  • Tan, C.Y., Ramesh, S., Tolouei, R., Sopyan, I., & Teng, W.D. (2011). Synthesis of High Fracture Toughness of Hydroxyapatite Bioceramics. Advanced Materials Research. 264-265, 1849-1855.
  • Tan, C.Y., Yaghoubi, A., Ramesh, S., Adzila, S., Purbolaksono, J., Hassan, M.A., Kutty, M.G. (2013). Sintering and mechanical properties of MgO-doped nanocrystalline hydroxyapatite. Ceramics International. 39, 8979-8983.
  • Timothy P.H., Case, E.D. (2003). The influence of the microstructure on the hardness of sintered hydroxyapatite. Ceramics International. 29, 699-706.
  • Torres, P.M.C., Abrantes, J.C.C., Kaushal, A., Pina, S., Döbelin, N., Bohner, M., Ferreira, J.M.F. (2016). Influence of Mg-doping, calcium pyrophosphate impurities and cooling rate on the allotropic β↔α-tricalcium phosphate phasetransformations. Journal of the European Ceramic Society. 36, 817-827.
  • Wojciech, S., Masatomo, Y., Masato K., & Masahiro Y. (1997). Hydroxyapatite ceramics with selected sintering additives. Biomaterials. 18, 923-933.
  • Xiaoheng, G., Xiao L., Huichang G., Xuetao S., Naru Z., Yingjun W. (2018). Hydrothermal growth of whitlockite coating on β-tricalcium phosphate surfaces for enhancing bone repair potential. Journal of Materials Science and Technology. 34, 1054-1059.
  • Xiuhua G., Kexing S., Shuhua L., Cuihua Z. (2012). Thermal expansion behavior of MgO/Cu composite with lower MgO volume fractions. Materials Research Bulletin. 47, 3211-3215.
  • Xihua, Z., Changxia, L., Musen, L., Yunqiang, B., Junlong, S. (2008). Fabrication of hydroxyapatite / diopside / alumina composites by hotpress sintering process. Ceramics International. 35, 1969-1973.
  • Zijun, P., Xudong L., Zhipeng X., Mengmeng Y. (2020). Sintering behavior and mechanical properties of spark plasma sintering SiO2-MgO ceramics. Ceramics International. 46, 2585-2591.
Year 2021, Volume: 24 Issue: 1, 1 - 14, 03.03.2021
https://doi.org/10.17780/ksujes.774314

Abstract

References

  • Ahmed A.N., Rawlinson, S., Hill, R.G. (2012). The role of magnesium oxide on thermal properties, structure and bioactivity of bioactive glass coating for dental implants. Journal of Non-Crystalline Solids. 358, 3019-3027.
  • Aminzare, M., Eskandari, A., Baroonian, M.H., Berenov, A., Hesabi, Z.R., Taheri, M., Sadrnezha, S.K. (2013). Hydroxyapatite nanocomposites: Synthesis, sintering and mechanical properties. Ceramics International. 39, 2197-2206.
  • Bellucci, D., Sola, A., Salvatori, R., Anesi, A., Chiarini, L., Cannillo, V. (2017). Role of magnesium oxide and strontium oxide as modifiers in silicate-based bioactive glasses: Effects on thermal behaviour, mechanical properties and in-vitro bioactivity. Materials Science & Engineering C. 72, 566-575.
  • Bodhak, S., Bose, S., Bandyopadhyay, A. (2011). Influence of MgO, SrO, and ZnO Dopants on Electro-Thermal Polarization Behavior and In Vitro Biological Properties of Hydroxyapatite Ceramics. Journal of the American Ceramic Society. 94(4), 1281-1288.
  • Camelia T., Iulian A., Goller, G., Yavas, B., Dan, G., Aurora A., Ion, C., Augustin S., Raiciu, A.D., Ioan C. (2019). The Sintering Behaviour and Mechanical Properties of Hydroxyapatite-Based Composites for Bone Tissue Regeneration. Materiale Plastice. 56(3), 644-648.
  • Catarina C.C., Rita A., Paulo A.Q., S.R. Sousa, F.J. Monteiroa. (2019). Antibacterial bone substitute of hydroxyapatite and magnesium oxide to prevent dental and orthopaedic infections. Materials Science & Engineering C. 97, 529-538.
  • Chun, Y., Ying-kui, G., Mi-lin, Z. (2010). Thermal decomposition and mechanical properties of hydroxyapatite ceramic. Transactions of Nonferrous Metals Society of China. 20, 254-258.
  • Curran, D.J., Fleming, T.J., Towler, M.R., Hampshire, S. (2011). Mechanical parameters of strontium doped hydroxyapatite sintered using microwave and conventional methods. Journal of the Mechanical Behavior of Biomedical Materials. 4, 2063-2073.
  • Demirkol, N. (2017). Bioactivity Properties and Characterization of Commercial Synthetic Hydroxyapatite-5wt.% Niobium (V) Oxide-5 wt.% Magnesium Oxide Composite. Acta Physica Polonica A. 132(3), 786-788.
  • Demirkol, N., Meydanoglu, O., Gokce, H., Oktar, F.N., Kayali, E.S. (2012). Comparison of Mechanical Properties of Sheep Hydroxyapatite (SHA) and Commercial Synthetic Hydroxyapatite (CSHA)-MgO Composites. Key Engineering Materials. 493-494, 588-593.
  • Evis, Z. (2007). Reactions in hydroxylapatite-zirconia composites. Ceramics International. 33, 987-991. Evis, Z., & Doremus, R.H. (2008). Effect of AlF3, CaF2 and MgF2 on hot-pressed hydroxyapatite-nanophase alpha-alumina composites. Materials Research Bulletin. 43 (2008) 2643-2651.
  • Evis, Z., Usta, M., Kutbay, I. (2009). Improvement in sinterability and phase stability of hydroxyapatite and partially stabilized zirconia composites. Journal of the European Ceramic Society. 29 621-628. Falah S.A., & Mohssan, S.N. (2017). Essential Trace Elements and Their Vital Roles in Human Body, Indian Journal of Advances in Chemical Science. 5(3), 127-136.
  • Fathi, M.H., Hanifi, A., Mortazavi, V. (2008). Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. Journal of Materials Processing and Technology. 202, 536-542.
  • Gautam, C.R., Kumar, S., Biradar, S., Josec, S., Mishra, V. K. (2016). Synthesis and enhanced mechanical properties of MgO substituted hydroxyapatite: a bone substitute material. Royal Society of Chemistry Advance. 6, 67565-67574
  • Gogolewski, P., Klimke, J., Krell, A., Beer, P. (2009). Al2O3 tools towards effective machining of wood-based materials. Journal of Materials Processing Technology. 209, 2231-2236.
  • Huang, Q., Chmaissem, O., Capponi, J.J., Chaillout, C., Marezio, M., Tholence, J.L., Santoro, A. (1994). Neutron powder diffraction study of the crystal structure of HgBa2Ca4Cu5O12+δ at room temperature and at 10 K. Physica C: Superconductivity. 227(1-2), 1-9.
  • Hughes, J.M., Jolliff, B.L. and M.E. Gunter. (2006). The atomic arrangement of merrillite from the Fra Mauro Formation, Appllol 143 lunar mission: The first structure of merrillite from the Moon. American Mineralogist, 91, 1547-1552.
  • Joanna K., Agnieszka K., Aneta Z., Anna Ś. (2015). Alpha-tricalcium phosphate synthesized by two different routes: Structural and spectroscopic characterization. Ceramics International. 41, 5727-5733.
  • Kalita, S.M., Bhatt, H.A. (2007). Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization. Materials Science and Engineering C. 27, 837-848.
  • Khalil, K.A., Kim, S.W., Dharmaraj, N., Kim, K.W., Kim, H.Y. (2007). Novel mechanism to improve toughness of the hydroxyapatite bioceramics using high-frequency induction heat sintering. Journal of Materials Processing and Technology. 187-188, 417-420.
  • Kim, S.R., Lee, J.H., Kim, Y.T., Riu, D.H., Jung, S.J., Lee, Y.J., Chung, S.C., Kim, Y.H. (2003). Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. Biomaterials. 24, 1389-1398.
  • Kumar, S., Gautam, C., Chauhan, B.S., Srikrishna, S., Yadav, R.S., Rai, S.B. (2020). Enhanced mechanical properties and hydrophilic behavior of magnesium oxide added hydroxyapatite nanocomposite: A bone substitute material for load bearing applications. Ceramics International. 46, 16235-16248.
  • Liga, S., Kristine S.A., Dmitrijs J., Natalija B., Liga B.C. (2013). The Study of Magnesium Substitution Effect on Physicochemical Properties of Hydroxyapatite. Material Science and Applied Chemistry. 28, 51-57.
  • Liga S., Kristine S.A., Natalija B., Marina S., Dmitrijs J., Liga B.C. (2014). Characterization of Mg-substituted hydroxyapatite synthesized by wet chemical method. Ceramics International. 40, 3261-3267.
  • Lin, F.H., Liao, C.J., Chen, K.S., Sun, J.S., Lin, C.P. (2001). Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water. Biomaterials. 22, 2981-2992.
  • Loreley M.A., Carolina M., Lucia N., Müller, W.D. (2019). Electrochemical deposition of Sr and Sr/Mg-co-substituted hydroxyapatite on Ti-40Nb alloy. Materials Letters. 248, 65-68.
  • Mahraza, Z.A.S., Sahara, M.R., Ghoshala, S.K., Md Saad, A.P., Syahrom, A. (2018). Sol-gel grown MgO-ZnO-tricalcium-phosphate nanobioceramics: Evaluation of mechanical and degradation attributes. Corrosion Science. 138, 179-188.
  • Maroua T., Ibrahim A., Algarni, H., Ayed, F.B., Yousef, E.S. (2019). Mechanical and tribological properties of the tricalcium phosphate-magnesium oxide composites. Materials Science & Engineering C. 96, 716-729.
  • Masatomo Y., Atsushi S., Takashi K., Akinori H. (2003). Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction. Journal of Solid State Chemistry. 175(2), 272-277.
  • Mathai, M., Shozo, T., Structures of Biological Minerals in Dental Research. Journal of Research of the National Institute of Standards and Technology. 106(6), 2001, 1035-1044.
  • Morshed K., Yanling L., Tracy M. (2013). Micro and nano MgO particles for the improvement of fracture toughness of bone-cement interfaces. Journal of Biomechanics. 46, 1035-1039.
  • Nie, J., Zhou, J., Huang, X., Wang, L., Liu, G., Cheng, J. (2019). Effect of TiO2 doping on densification and mechanical properties of hydroxyapatite by microwave sintering. Ceramics International. 45, 13647-13655.
  • Niihara, K. (1985). Indentation microfracture of ceramics-its application and problems. Journal of Ceramic Society of Japan. 20, 12-18.
  • Nikaido, T., Tsuru, K., Munar, M., Maruta, M., Matsuya, S., Nakamura, S., Ishikawa, K. (2015). Fabrication of β-TCP foam: Effects of magnesium oxide as phase stabilizer on its properties. Ceramics International. 41, 14245-14250.
  • Oktar, F.N., Agathopoulos, S., Ozyegin, L.S., Gunduz, O., Demirkol, N., Bozkurt, Y., Salman, S. (2007). Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO2, MgO, Al2O3, and ZrO2. Journal of Materials Science-Materials in Medicine. 18, 2137-2143.
  • Onder, S., Kok, F.N., Kazmanli, K., Urgen, M. (2013). Magnesium substituted hydroxyapatite formation on (Ti, Mg)N coatings produced by cathodic arc PVD techniques. Material Science & Engineering C. 33, 4337-4342.
  • Pazarlioglu, S., & Salman, S. (2017). Sintering effect on the microstructural, mechanical, and in vitro bioactivity properties of a commercially synthetic hydroxyapatite. Journal of The Australian Ceramic Society. 53, 391-401.
  • Pazarlioglu, S. (2019). Hydroxyapatite/Cerium Oxide Composites: Sintering, Microstructural, Mechanical and In-vitro Bioactivity Properties. International Journal of Advance in Engineering and Pure Science. 4, 295-304.
  • Pazarlioglu, S., & Salman, S. a (2019). Effect of lanthanum oxide additive on the sinterability, physical/mechanical, and bioactivity properties of hydroxyapatite-alpha alumina composite. Journal of the Australian Ceramic Society. 55, 1195-1209.
  • Pazarlioglu, S., & Salman, S. b (2019). Effect of yttria on thermal stability, mechanical and in vitro bioactivity properties of hydroxyapatite/alumina composite. Journal of the Ceramic Processing and Research. 20(1), 99-112.
  • Pei, L.Z., Yin, W.Y., Wang, J.F., Chen, J., Fan, C.G., Zhang, Q.F. (2010). Low Temperature Synthesis of Magnesium Oxide and Spinel Powders by a Sol-Gel Process. Materials Research. 13(3), 339-343.
  • Que, W., Khor, K.A., Xu, J.L., Yu, L.G. (2008). Hydroxyapatite/titania nanocomposites derived by combining high-energy ball milling with spark plasma sintering processes. Journal of European Ceramic Society. 28, 3083-3090.
  • Rahmati, M., Fathi, M., Ahmadian, M. (2018). Preparation and structural characterization of bioactive Bredigite (Ca7MgSi4O16) nanopowder. Journal of Alloy and Compounds. 732, 9-15.
  • Reza P., Hassanzadeh-Tabrizi, S.A., Reza, E.-K., Alhaji, A., Abbas, A., Nourbakhsh, A. (2019). Polycrystalline infrared-transparent MgO fabricated by spark plasma sintering. Ceramics International. 45, 18943-18950.
  • Ryu, H.S., Hong, K.S., Lee, J.K., Kim, D.J., Lee, J.H., Chang, B.S., Lee, D., Lee, C.K., Chung, S.S. (2004). Magnesia-doped HA/β-TCP ceramics and evaluation of their biocompatibility. Biomaterials. 25, 393-401.
  • Schroeder, L.W., Dickens, B., Brown, W.E. (1977). Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. II. Refinement of Mg-containing β-Ca3(PO4)2. Journal of Solid State Chemistry. 22(3), 253-262.
  • Sato, K., Yugami, H., Hashida, T. (2004). Effect of rare-earth oxides on fracture properties of ceria ceramics. Journal of Material Science. 39, 5765-5770.
  • Ślósarczyk, A., Piekarczyk, J. (1999) Ceramic materials on the basis of hydroxyapatite and tricalcium phosphate. Ceramics International, 25, 561-565
  • Ślósarczyk, A., Klisch, M., Błaẑewicz, M., Piekarczyk, J., Stobierski, L., Rapacz-Kmita, A. (2000). Hot pressed hydroxyapatite-carbon fibre composites. Journal of the European Ceramic Society. 20, 1397-1402.
  • Tan, C.Y., Ramesh, S., Tolouei, R., Sopyan, I., & Teng, W.D. (2011). Synthesis of High Fracture Toughness of Hydroxyapatite Bioceramics. Advanced Materials Research. 264-265, 1849-1855.
  • Tan, C.Y., Yaghoubi, A., Ramesh, S., Adzila, S., Purbolaksono, J., Hassan, M.A., Kutty, M.G. (2013). Sintering and mechanical properties of MgO-doped nanocrystalline hydroxyapatite. Ceramics International. 39, 8979-8983.
  • Timothy P.H., Case, E.D. (2003). The influence of the microstructure on the hardness of sintered hydroxyapatite. Ceramics International. 29, 699-706.
  • Torres, P.M.C., Abrantes, J.C.C., Kaushal, A., Pina, S., Döbelin, N., Bohner, M., Ferreira, J.M.F. (2016). Influence of Mg-doping, calcium pyrophosphate impurities and cooling rate on the allotropic β↔α-tricalcium phosphate phasetransformations. Journal of the European Ceramic Society. 36, 817-827.
  • Wojciech, S., Masatomo, Y., Masato K., & Masahiro Y. (1997). Hydroxyapatite ceramics with selected sintering additives. Biomaterials. 18, 923-933.
  • Xiaoheng, G., Xiao L., Huichang G., Xuetao S., Naru Z., Yingjun W. (2018). Hydrothermal growth of whitlockite coating on β-tricalcium phosphate surfaces for enhancing bone repair potential. Journal of Materials Science and Technology. 34, 1054-1059.
  • Xiuhua G., Kexing S., Shuhua L., Cuihua Z. (2012). Thermal expansion behavior of MgO/Cu composite with lower MgO volume fractions. Materials Research Bulletin. 47, 3211-3215.
  • Xihua, Z., Changxia, L., Musen, L., Yunqiang, B., Junlong, S. (2008). Fabrication of hydroxyapatite / diopside / alumina composites by hotpress sintering process. Ceramics International. 35, 1969-1973.
  • Zijun, P., Xudong L., Zhipeng X., Mengmeng Y. (2020). Sintering behavior and mechanical properties of spark plasma sintering SiO2-MgO ceramics. Ceramics International. 46, 2585-2591.
There are 58 citations in total.

Details

Primary Language Turkish
Subjects Engineering, Wearable Materials
Journal Section Textile Engineering
Authors

Süleyman Serdar Pazarlıoğlu 0000-0002-7870-8418

Publication Date March 3, 2021
Submission Date July 27, 2020
Published in Issue Year 2021Volume: 24 Issue: 1

Cite

APA Pazarlıoğlu, S. S. (2021). SİNTERLEME SICAKLIKLARI VE MAGNEZYUM OKSİT İLAVESİNİN HİDROKSİAPATİTİN ÖZELLİKLERİNE ETKİSİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 24(1), 1-14. https://doi.org/10.17780/ksujes.774314