Research Article
BibTex RIS Cite

Taşkın Yayılım Haritalarında Arazi Kullanım Türü Ve Yüzeysel Akış Etkilerinin Değerlendirilmesi: Malatya İli Örneği

Year 2022, Volume: 25 Issue: 3, 222 - 236, 03.09.2022
https://doi.org/10.17780/ksujes.1094321

Abstract

Dünya genelinde kentleşme artmaktadır ve buna bağlı olarak kentsel nüfus da artmaktadır. Hızlı kentsel nüfus artışının sonucu olarak yetersiz drenaj sistemleri nedeniyle taşkın yağışı durumunda, binaların bodrum katlarını su basması, ulaşım yollarının kapanması gibi can ve mal kaybına neden olabilecek hasarlar meydana gelmektedir. Bu çalışmada, Malatya ili için arazi kullanım türü ve sızma durumlarına bağlı üç farklı senaryo kapsamında taşkın yayılım haritaları oluşturulmuştur. Bu senaryolar, modelde; arazi kullanım türünün olmadığı, arazi kullanım türünün olduğu ve arazi kullanım türü ile yüzeysel akış değerlerinin birlikte olduğu durumuna dayanmaktadır. Çalışmanın, hidrolojik veya hidrodinamik modellerde arazi kullanımı ve yüzeysel akış verilerinin kullanımı hakkında detaylar sunması amaçlanmıştır. Bu kapsamda, InfoWorks ICM yazılımı kullanılarak oluşturulan modeller, model doğruluğunu arttırması için sayısal yükseklik modeli, bina konum verileri, arazi kullanım türü ve gelecekte meydana gelebilecek yağış yükseklikleri verileriyle desteklenmiştir. Sonuçlar, arazi kullanım türü ile yüzeysel akış değerlerinin birlikte kullanıldığı modele dayalı senaryo da diğer iki senaryoya göre havza genelinde daha az akış kollarının oluştuğunu göstermiştir.

Supporting Institution

İnönü Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

İÜ-BAP FYL 2020-2058

References

  • Abdulkareem, J., Pradhan, B., Sulaiman, W., ve Jamil, N. (2018). Review of studies on hydrological modelling in Malaysia. Modeling Earth Systems and Environment, 4(4), 1577-1605.
  • ArcMap. (2022). How fill works. https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/how-fill-works.htm Accessed 28.03.2022.
  • Bertsch, R., Glenis, V., ve Kilsby, C. (2017). Urban flood simulation using synthetic storm drain networks. Water, 9(12), 925.
  • Bongaarts, J. (2006). United nations department of economic and social affairs, population division world mortality report 2005. Population and Development Review, 32(3), 594-596.
  • Cheng, T., Xu, Z., Hong, S., ve Song, S. (2017). Flood risk zoning by using 2D hydrodynamic modeling: A case study in Jinan City. Mathematical Problems in Engineering, 2017.
  • Cortés-Zambrano, M., Amaya-Tequia, W. E., ve Gamba-Fernández, D. S. (2021). Implementation of the hydraulic modelling of urban drainage in the northeast sector, Tunja, Boyacá. Revista Facultad de Ingeniería Universidad de Antioquia(101), 74-83.
  • Çırağ, B. (2021). Yağmursuyu drenaj sistemlerinin taşkın performansının değerlendirilmesi. Yüksek Lisans Tezi. İnönü Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Ana Bilim Dalı, Malatya 158s.
  • ÇŞİB. (2017). Yağmursuyu toplama, depolama ve deşarj sistemleri hakkında yönetmelik. https://www.resmigazete.gov.tr/eskiler/2017/06/20170623-8.htm Erişim 28.03.2022
  • Darabi, H., Choubin, B., Rahmati, O., Haghighi, A. T., Pradhan, B., ve Kløve, B. (2019). Urban flood risk mapping using the GARP and QUEST models: A comparative study of machine learning techniques. Journal of Hydrology, 569, 142-154.
  • Fan, Y., Ao, T., Yu, H., Huang, G., ve Li, X. (2017). A coupled 1D-2D hydrodynamic model for urban flood inundation. Advances in Meteorology, 2017.
  • Innovyze. (2022). 2D zones. https://help2.innovyze.com/infoworksicm/Content/HTML/ICM_ILCM/2D_Zones.htm Accessed 28.03.2022
  • Jamali, B., Löwe, R., Bach, P. M., Urich, C., Arnbjerg-Nielsen, K., ve Deletic, A. (2018). A rapid urban flood inundation and damage assessment model. Journal of Hydrology, 564, 1085-1098.
  • Jiang, L., Chen, Y., ve Wang, H. (2015). Urban flood simulation based on the SWMM model. Proceedings of the International Association of Hydrological Sciences, 368, 186-191.
  • Kadıoğlu, M. (2019). Kent Selleri Yönetim ve Kontrol Rehberi. Marmara Belediyeler Birliği Kültür Yayınları, İstanbul.
  • Mejía, A. I., ve Moglen, G. E. (2010). Spatial distribution of imperviousness and the space‐time variability of rainfall, runoff generation, and routing. Water Resources Research, 46(7).
  • Mukherjee, S., Aadhar, S., Stone, D., ve Mishra, V. (2018). Increase in extreme precipitation events under anthropogenic warming in India. Weather and Climate Extremes, 20, 45-53.
  • Naiji, Z., Mostafa, O., Amarjouf, N., ve Rezqi, H. (2021). Application of two-dimensional hydraulic modelling in flood risk mapping. A case of the urban area of Zaio, Morocco. Geocarto International, 36(2), 180-196.
  • Narasimhan, B., Bhallamudi, S. M., AMondal, A., Ghosh, S., ve Mujumdar, P. (2016). Chennai floods 2015, A Rapid Assessment. Interdisciplinary Centre for Water Research Indian Institute of Science, Hindistan.
  • Natarajan, S., ve Radhakrishnan, N. (2020). An integrated hydrologic and hydraulic flood modeling study for a medium-sized ungauged urban catchment area: A case study of Tiruchirappalli City Using HEC-HMS and HEC-RAS. Journal of The Institution of Engineers (India): Series A, 101(2), 381-398.
  • Papaioannou, G., Efstratiadis, A., Vasiliades, L., Loukas, A., Papalexiou, S. M., Koukouvinos, A., Tsoukalas, I., ve Kossieris, P. (2018). An operational method for flood directive implementation in ungauged urban areas. Hydrology, 5(2), 24.
  • Pontius Jr, R. G., ve Schneider, L. C. (2001). Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, ecosystems ve environment, 85(1-3), 239-248.
  • Qi, W., Ma, C., Xu, H., Chen, Z., Zhao, K., ve Han, H. (2021). A review on applications of urban flood models in flood mitigation strategies. Natural Hazards, 108(1), 31-62.
  • Rahmati, O., Darabi, H., Haghighi, A. T., Stefanidis, S., Kornejady, A., Nalivan, O. A., ve Tien Bui, D. (2019). Urban flood hazard modeling using self-organizing map neural network. Water, 11(11), 2370.
  • Rangari, V. A., Umamahesh, N., ve Bhatt, C. (2019). Assessment of inundation risk in urban floods using HEC RAS 2D. Modeling Earth Systems and Environment, 5(4), 1839-1851.
  • Sidek, L. M., Chua, L. H. C., Azizi, A. S. M., Basri, H., Jaafar, A. S., ve Moon, W. C. (2021). Application of PCSWMM for the 1-D and 1-D–2-D Modeling of Urban Flooding in Damansara Catchment, Malaysia. Applied Sciences, 11(19), 9300.
  • Şimşek, H. (2017). Corine 4. seviye arazi örtüsü/kullanım sınıflarının belirlenmesi ve yüzey akış risk haritasının oluşturulması (Bartın çayı havzası örneği). Yüksek Lisans Tezi. Bartın Üniversitesi Fen Bilimleri Enstitüsü, Orman Mühendisliği Ana Bilim Dalı, Bartın 101s.
  • T.C.Kültür ve Turizm Bakanlığı. (2022). İklim ve bitki örtüsü. https://malatya.ktb.gov.tr/TR-58266/iklim-ve-bitki-ortusu.html Erişim 23.05.2022.
  • T.C.Tarım ve Orman Bakanlığı. (2022). Corine projesi. https://corine.tarimorman.gov.tr/corineportal/index.html Erişim 28.03.2022.
  • Todini, E. (1978). Using a desk-top computer for an on-line flood warning system. IBM Journal of Research and Development, 22(5), 464-471.
  • Turkington, T., Breinl, K., Ettema, J., Alkema, D., ve Jetten, V. (2016). A new flood type classification method for use in climate change impact studies. Weather and Climate Extremes, 14, 1-16.
  • Yao, L., Wei, W., ve Chen, L. (2016). How does imperviousness impact the urban rainfall-runoff process under various storm cases?. Ecological indicators, 60, 893-905.
  • W. Steffen, L. Hughes, D. Alexander, ve M.Rice. (2017). Cranking up the intensity: climate change and extreme weather events. Climate Council, Avustralya.

Evaluation of Land Use Type and Effects of Runoff in Flood Inundation Maps: The Case of Malatya Province

Year 2022, Volume: 25 Issue: 3, 222 - 236, 03.09.2022
https://doi.org/10.17780/ksujes.1094321

Abstract

Urbanization is increasing worldwide, and the urban population is increasing accordingly. As a result of rapid urban population growth, in the event of flooding due to inadequate drainage systems, damages that may cause loss of life and property such as flooding of basements of buildings and closure of transportation roads occur. In this study, flood spreading maps were created for Malatya province within the scope of three different scenarios depending on the land use type and infiltration conditions. These scenarios, in the model; it is based on the situation where there is no land use type, there is a land use type, and the land use type and runoff values are together. The study is intended to provide details on the use of land use and runoff data in hydrological or hydrodynamic models. In this context, the models created using the InfoWorks ICM software are supported by the digital elevation model, building location data, land use type and future precipitation heights to increase the model accuracy. The results showed that in the scenario based on the model, in which land use type and runoff values are used together, less flow occurs throughout the basin compared to the other two scenarios.

Project Number

İÜ-BAP FYL 2020-2058

References

  • Abdulkareem, J., Pradhan, B., Sulaiman, W., ve Jamil, N. (2018). Review of studies on hydrological modelling in Malaysia. Modeling Earth Systems and Environment, 4(4), 1577-1605.
  • ArcMap. (2022). How fill works. https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/how-fill-works.htm Accessed 28.03.2022.
  • Bertsch, R., Glenis, V., ve Kilsby, C. (2017). Urban flood simulation using synthetic storm drain networks. Water, 9(12), 925.
  • Bongaarts, J. (2006). United nations department of economic and social affairs, population division world mortality report 2005. Population and Development Review, 32(3), 594-596.
  • Cheng, T., Xu, Z., Hong, S., ve Song, S. (2017). Flood risk zoning by using 2D hydrodynamic modeling: A case study in Jinan City. Mathematical Problems in Engineering, 2017.
  • Cortés-Zambrano, M., Amaya-Tequia, W. E., ve Gamba-Fernández, D. S. (2021). Implementation of the hydraulic modelling of urban drainage in the northeast sector, Tunja, Boyacá. Revista Facultad de Ingeniería Universidad de Antioquia(101), 74-83.
  • Çırağ, B. (2021). Yağmursuyu drenaj sistemlerinin taşkın performansının değerlendirilmesi. Yüksek Lisans Tezi. İnönü Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Ana Bilim Dalı, Malatya 158s.
  • ÇŞİB. (2017). Yağmursuyu toplama, depolama ve deşarj sistemleri hakkında yönetmelik. https://www.resmigazete.gov.tr/eskiler/2017/06/20170623-8.htm Erişim 28.03.2022
  • Darabi, H., Choubin, B., Rahmati, O., Haghighi, A. T., Pradhan, B., ve Kløve, B. (2019). Urban flood risk mapping using the GARP and QUEST models: A comparative study of machine learning techniques. Journal of Hydrology, 569, 142-154.
  • Fan, Y., Ao, T., Yu, H., Huang, G., ve Li, X. (2017). A coupled 1D-2D hydrodynamic model for urban flood inundation. Advances in Meteorology, 2017.
  • Innovyze. (2022). 2D zones. https://help2.innovyze.com/infoworksicm/Content/HTML/ICM_ILCM/2D_Zones.htm Accessed 28.03.2022
  • Jamali, B., Löwe, R., Bach, P. M., Urich, C., Arnbjerg-Nielsen, K., ve Deletic, A. (2018). A rapid urban flood inundation and damage assessment model. Journal of Hydrology, 564, 1085-1098.
  • Jiang, L., Chen, Y., ve Wang, H. (2015). Urban flood simulation based on the SWMM model. Proceedings of the International Association of Hydrological Sciences, 368, 186-191.
  • Kadıoğlu, M. (2019). Kent Selleri Yönetim ve Kontrol Rehberi. Marmara Belediyeler Birliği Kültür Yayınları, İstanbul.
  • Mejía, A. I., ve Moglen, G. E. (2010). Spatial distribution of imperviousness and the space‐time variability of rainfall, runoff generation, and routing. Water Resources Research, 46(7).
  • Mukherjee, S., Aadhar, S., Stone, D., ve Mishra, V. (2018). Increase in extreme precipitation events under anthropogenic warming in India. Weather and Climate Extremes, 20, 45-53.
  • Naiji, Z., Mostafa, O., Amarjouf, N., ve Rezqi, H. (2021). Application of two-dimensional hydraulic modelling in flood risk mapping. A case of the urban area of Zaio, Morocco. Geocarto International, 36(2), 180-196.
  • Narasimhan, B., Bhallamudi, S. M., AMondal, A., Ghosh, S., ve Mujumdar, P. (2016). Chennai floods 2015, A Rapid Assessment. Interdisciplinary Centre for Water Research Indian Institute of Science, Hindistan.
  • Natarajan, S., ve Radhakrishnan, N. (2020). An integrated hydrologic and hydraulic flood modeling study for a medium-sized ungauged urban catchment area: A case study of Tiruchirappalli City Using HEC-HMS and HEC-RAS. Journal of The Institution of Engineers (India): Series A, 101(2), 381-398.
  • Papaioannou, G., Efstratiadis, A., Vasiliades, L., Loukas, A., Papalexiou, S. M., Koukouvinos, A., Tsoukalas, I., ve Kossieris, P. (2018). An operational method for flood directive implementation in ungauged urban areas. Hydrology, 5(2), 24.
  • Pontius Jr, R. G., ve Schneider, L. C. (2001). Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, ecosystems ve environment, 85(1-3), 239-248.
  • Qi, W., Ma, C., Xu, H., Chen, Z., Zhao, K., ve Han, H. (2021). A review on applications of urban flood models in flood mitigation strategies. Natural Hazards, 108(1), 31-62.
  • Rahmati, O., Darabi, H., Haghighi, A. T., Stefanidis, S., Kornejady, A., Nalivan, O. A., ve Tien Bui, D. (2019). Urban flood hazard modeling using self-organizing map neural network. Water, 11(11), 2370.
  • Rangari, V. A., Umamahesh, N., ve Bhatt, C. (2019). Assessment of inundation risk in urban floods using HEC RAS 2D. Modeling Earth Systems and Environment, 5(4), 1839-1851.
  • Sidek, L. M., Chua, L. H. C., Azizi, A. S. M., Basri, H., Jaafar, A. S., ve Moon, W. C. (2021). Application of PCSWMM for the 1-D and 1-D–2-D Modeling of Urban Flooding in Damansara Catchment, Malaysia. Applied Sciences, 11(19), 9300.
  • Şimşek, H. (2017). Corine 4. seviye arazi örtüsü/kullanım sınıflarının belirlenmesi ve yüzey akış risk haritasının oluşturulması (Bartın çayı havzası örneği). Yüksek Lisans Tezi. Bartın Üniversitesi Fen Bilimleri Enstitüsü, Orman Mühendisliği Ana Bilim Dalı, Bartın 101s.
  • T.C.Kültür ve Turizm Bakanlığı. (2022). İklim ve bitki örtüsü. https://malatya.ktb.gov.tr/TR-58266/iklim-ve-bitki-ortusu.html Erişim 23.05.2022.
  • T.C.Tarım ve Orman Bakanlığı. (2022). Corine projesi. https://corine.tarimorman.gov.tr/corineportal/index.html Erişim 28.03.2022.
  • Todini, E. (1978). Using a desk-top computer for an on-line flood warning system. IBM Journal of Research and Development, 22(5), 464-471.
  • Turkington, T., Breinl, K., Ettema, J., Alkema, D., ve Jetten, V. (2016). A new flood type classification method for use in climate change impact studies. Weather and Climate Extremes, 14, 1-16.
  • Yao, L., Wei, W., ve Chen, L. (2016). How does imperviousness impact the urban rainfall-runoff process under various storm cases?. Ecological indicators, 60, 893-905.
  • W. Steffen, L. Hughes, D. Alexander, ve M.Rice. (2017). Cranking up the intensity: climate change and extreme weather events. Climate Council, Avustralya.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Civil Engineering
Authors

Burak Çırağ 0000-0002-7721-5128

Mahmut Fırat 0000-0002-8010-9289

Project Number İÜ-BAP FYL 2020-2058
Publication Date September 3, 2022
Submission Date March 28, 2022
Published in Issue Year 2022Volume: 25 Issue: 3

Cite

APA Çırağ, B., & Fırat, M. (2022). Taşkın Yayılım Haritalarında Arazi Kullanım Türü Ve Yüzeysel Akış Etkilerinin Değerlendirilmesi: Malatya İli Örneği. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(3), 222-236. https://doi.org/10.17780/ksujes.1094321