Research Article
BibTex RIS Cite

COMPRESSIVE BEHAVIOR OF A NOVEL CORE MATERIAL FOR SANDWICH COMPOSITES

Year 2022, Volume: 25 Issue: 3, 349 - 355, 03.09.2022
https://doi.org/10.17780/ksujes.1116407

Abstract

The mechanical properties of sandwich composites are more depended on the core material structure. Damage of the commercial honeycomb core materials are generally occurred as delamination the unit-cells of core material under mechanical or impact loads. In addition, the common feature of commercial core materials is their high-cost. Economic approach of the current researches are led the studies based on the principle of converting ordinary materials into advanced materials. Nowadays, the development of low-cost/high-performance products that serve to reduce environmental impact is an important requirement. In present study, a novel core material is developed for sandwich composites by using a special stitching design. The developed core structure is defined as ‘rhombus core’ which offers a lower cost/higher performance compared to commercial core materials. The compressive behavior of rhombus and commercial core structures are compared. Rhombus cores showed the highest compressive strength and retained their structural integrity after compressive load without any delamination/crushing at stitching regions.

Supporting Institution

Kahramanmaras Sutcu Imam University Scientific Research Unit

Project Number

KSU BAP-2017/7-174YLS

References

  • ASTM C365-16, (2016). Standard Test Method for Flatwise Compressive Properties of Sandwich Cores.
  • DIAB Knowledge Series. (2017). Sandwich composites and core materials”. www.diabgroup.com/.../DIA0151CoreGuide82pagesEN30Nov2012Mar.
  • George, T., Deshpande, V.S., Sharp, K., Wadley, H.N.G. (2014). Hybrid Core Carbon Fibre Composite Sandwich Panels: Fabrication and Mechanical Response, Composite Structures, 108, 696-710.
  • Hazizan, M. A., & Cantwell, W. J. (2003). The low velocity impact response of an aluminium honeycomb sandwich structure. Composites Part B: Engineering, 34(8), 679-687.
  • He, M., & Hu, W. (2008). A study on composite honeycomb sandwich panel structure. Materials & Design, 29(3), 709-713.
  • Kompozitnet. (2022). https://www.kompozit.net/.
  • Kopp, R., Abratis, C., & Nutzmann, M. (2004). Lightweight sandwich sheets for automobile applications. Production Engineering Research and Development, 11(2), 55-60.
  • Mountasir, A., Hoffmann G., Cherif, C., Löser, M., Mühl, A., & Großmann, K. (2013). Development of non-crimp multi-layered 3D spacer fabric structures using hybrid yarns for thermoplastic composites. Procedia Materials Science, 2, 10-17.
  • Neje, G., Behera, B.K. (2019). Investigation of mechanical performance of 3D woven spacer sandwich composites with different cell geometries. Composites Part B, 160, 306-314.
  • Ratwani, M.M. (2010). Composite Materials and Sandwich Structures – A Primer, Rto-En-Avt., NATO, 156, 1-16.
  • Wei, X., Wu, Q., Gao, Y., Yang, Q., & Xiong, J. (2022). Composite honeycomb sandwich columns under in-plane compression: Optimal geometrical design and three-dimensional failure mechanism maps. European Journal of Mechanics-A/Solids, 91, 104415.
  • Wu, X., Yu, H., Guo, L., Zhang, L., Sun, X., & Chai, Z. (2019). Experimental and numerical investigation of static and fatigue behaviors of composites honeycomb sandwich structure. Composite Structures, 213, 165-172.
  • Xu, G., Yang, F., Zeng, T., Cheng, S., & Wang, Z. (2016). Bending Behaviour of Graded Corrugated Truss Core Composite Sandwich Beams, Composite Structures, 138, 342-351. Zhao, C.Q., Li, D.S., Ge, T.Q., Jiang, L., & Jiang, N. (2014). Experimental study on the compression properties and failure mechanism of 3D integrated woven spacer composites. Materials and Design, 56, 50-59.

SANDVİÇ KOMPOZİTLER İÇİN ÖZGÜN BİR ÇEKİRDEK MALZEMESİNİN BASMA DAVRANIŞI

Year 2022, Volume: 25 Issue: 3, 349 - 355, 03.09.2022
https://doi.org/10.17780/ksujes.1116407

Abstract

Sandviç kompozitlerin mekanik özellikleri daha çok çekirdek malzeme yapısına bağlıdır. Ticari balpeteği çekirdek malzemelerde mekanik veya darbe yükü altında meydana gelen hasar genellikle, çekirdek birim hücrelerinin delaminasyonu ve ezilmesi olarak gerçekleşmektedir. Ayrıca, ticari çekirdek malzemelerin ortak özelliği, yüksek maliyetleridir. Güncel araştırmaların ekonomik yaklaşımı, sıradan malzemelerin ileri malzemelere dönüştürülmesi ilkesine dayalı çalışmalara yön vermektedir. Günümüzde çevresel etkiyi azaltmaya yönelik düşük maliyetli/yüksek performanslı ürünlerin geliştirilmesi önemli bir gereksinimdir. Bu çalışmada, özel bir dikiş tasarımı kullanılarak sandviç kompozitler için yeni bir çekirdek malzeme geliştirilmiştir. Geliştirilen çekirdek yapı, ‘rombus çekirdek’ olarak tanımlanmakta ve ticari çekirdek malzemelerine kıyasla daha düşük maliyet/daha yüksek performans sınmaktadır. Rombus ve ticari çekirdek yapıların basma davranışı karşılaştırılmıştır. Rombus çekirdek yapılar en yüksek basma dayanımını göstermiş ve hücre duvarlarını oluşturan dikiş bölgelerinde herhangi bir delaminasyon/ezilme olmaksızın basma yüküne maruz kaldıktan sonra yapısal bütünlüklerini korumuşlardır.

Project Number

KSU BAP-2017/7-174YLS

References

  • ASTM C365-16, (2016). Standard Test Method for Flatwise Compressive Properties of Sandwich Cores.
  • DIAB Knowledge Series. (2017). Sandwich composites and core materials”. www.diabgroup.com/.../DIA0151CoreGuide82pagesEN30Nov2012Mar.
  • George, T., Deshpande, V.S., Sharp, K., Wadley, H.N.G. (2014). Hybrid Core Carbon Fibre Composite Sandwich Panels: Fabrication and Mechanical Response, Composite Structures, 108, 696-710.
  • Hazizan, M. A., & Cantwell, W. J. (2003). The low velocity impact response of an aluminium honeycomb sandwich structure. Composites Part B: Engineering, 34(8), 679-687.
  • He, M., & Hu, W. (2008). A study on composite honeycomb sandwich panel structure. Materials & Design, 29(3), 709-713.
  • Kompozitnet. (2022). https://www.kompozit.net/.
  • Kopp, R., Abratis, C., & Nutzmann, M. (2004). Lightweight sandwich sheets for automobile applications. Production Engineering Research and Development, 11(2), 55-60.
  • Mountasir, A., Hoffmann G., Cherif, C., Löser, M., Mühl, A., & Großmann, K. (2013). Development of non-crimp multi-layered 3D spacer fabric structures using hybrid yarns for thermoplastic composites. Procedia Materials Science, 2, 10-17.
  • Neje, G., Behera, B.K. (2019). Investigation of mechanical performance of 3D woven spacer sandwich composites with different cell geometries. Composites Part B, 160, 306-314.
  • Ratwani, M.M. (2010). Composite Materials and Sandwich Structures – A Primer, Rto-En-Avt., NATO, 156, 1-16.
  • Wei, X., Wu, Q., Gao, Y., Yang, Q., & Xiong, J. (2022). Composite honeycomb sandwich columns under in-plane compression: Optimal geometrical design and three-dimensional failure mechanism maps. European Journal of Mechanics-A/Solids, 91, 104415.
  • Wu, X., Yu, H., Guo, L., Zhang, L., Sun, X., & Chai, Z. (2019). Experimental and numerical investigation of static and fatigue behaviors of composites honeycomb sandwich structure. Composite Structures, 213, 165-172.
  • Xu, G., Yang, F., Zeng, T., Cheng, S., & Wang, Z. (2016). Bending Behaviour of Graded Corrugated Truss Core Composite Sandwich Beams, Composite Structures, 138, 342-351. Zhao, C.Q., Li, D.S., Ge, T.Q., Jiang, L., & Jiang, N. (2014). Experimental study on the compression properties and failure mechanism of 3D integrated woven spacer composites. Materials and Design, 56, 50-59.
There are 13 citations in total.

Details

Primary Language English
Subjects Wearable Materials
Journal Section Textile Engineering
Authors

Neslihan Hayta 0000-0003-1008-0887

Gaye Kaya 0000-0003-1866-4799

Project Number KSU BAP-2017/7-174YLS
Publication Date September 3, 2022
Submission Date May 13, 2022
Published in Issue Year 2022Volume: 25 Issue: 3

Cite

APA Hayta, N., & Kaya, G. (2022). COMPRESSIVE BEHAVIOR OF A NOVEL CORE MATERIAL FOR SANDWICH COMPOSITES. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(3), 349-355. https://doi.org/10.17780/ksujes.1116407