Research Article
BibTex RIS Cite

Kendi Kendini Konfigüre Edebilen Robotik Bir Sistem için Mikro Ölçekte Elektromanyetik Dış Eyleyici Tabanlı Hareket Modeli Geliştirilmesi

Year 2022, Volume: 25 Issue: 3, 434 - 449, 03.09.2022
https://doi.org/10.17780/ksujes.1137806

Abstract

Kendi kendini konfigüre eden modüler robotlar (KKMR), yeni görevleri yerine getirmek, yeni çevresel koşullara uyum sağlamak ve olabilecek hasarlardan etkilenmemek amacıyla modüllerin uzamsal organizasyonunu değiştirebilen otonom kinematik makineler olarak tanımlanabilir. KKMR sistemlerinin en önemli amaçlarından biri milyon seviyesinde modülün bir arada çalışabildiği sistemlerin geliştirilmesidir. KKMR sistemlerinin minyatürleştirilmesi aşamasında yerleştirme ve taşıma zorlukları ortaya çıkar. Son yıllarda mikro üretim alanında elde edilen kazanımların yardımıyla, dışsal eyleyicilerin hareket sağladığı mikro robotlar, KKMR sistemlerinin minyatürleştirilmesine iyi bir alternatif sunmaktadır. Bu çalışmada mikro robotlar için dışsal manyetik eyleyiciler tarafından hareket sağlanan yeni bir kendi kendini konfigüre etme mekanizması geliştirilmiştir. Çalışmada manyetik alan etkisinde mikro tüpler içerisindeki mıknatısların hareketi sonlu elemanlar yöntemi kullanılarak incelenmiştir. Mekanizmanın dinamik modeli, sonlu elemanlar yöntemi kullanılarak elde edilmiş ve benzetim çalışmaları ile uygulanabilirliği ortaya konulmuş, teorik sonuçlarla karşılaştırmalı olarak sunulmuştur. Çalışmanın biyomedikal uygulamalarda, medikal robotlarda, endüstride, savunma sanayinde ve uzay araştırmalarındaki mikro robotik sistemler için katkıları olacağı düşünülmektedir.

References

  • Abbott, J.J., Peyer, K.E., Lagomarsino, M.C., Zhang, L., Dong, L., Kaliakatsos, I.K., & Nelson, B.J. (2009). How should microrobots swim? International Journal of Robotics Research, 28, 157-167.
  • Al Khatib, E., Bhattacharjee, A., Razzaghi, P., Rogowski, L.W., Kim, M.J., & Hurmuzlu, Y. (2020). Magnetically Actuated Simple Millirobots for Complex Navigation and Modular Assembly. IEEE Robotics and Automation Letters, 5(2), 2958-2965.
  • Ceylan, H., Giltinan, J., Kozielski, K., & Sitti, M. (2017). Mobile microrobots for bioengineering applications. Lab Chip, 17(10), 1705-1724.
  • Ciszewski, M., Buratowski, T., Giergiel, M., Małka, P., & Kurc, K. (2014). Virtual prototyping, design and analysis of an in-pipe inspection mobile robot. Journal of Theoretical and Applied Mechanics, 52(2), 417-429.
  • COMSOL Multiphysics® v. 6.0. www.comsol.com. COMSOL AB, Stockholm, Sweden.
  • Diller, E., Pawashe, C., Floyd, S. & Sitti, M. (2011). Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. International Journal of Robotics Research, 30(14), 1667-1680.
  • Ergeneman, O., Dogangil, G., Kummer, M.P., Abbott, J.J., Nazeeruddin, M.K., & Nelson, B.J. (2008). A magnetically controlled wireless optical oxygen sensor for intraocular measurements. IEEE Sensors Journal, 8(1), 29-37.
  • Feczko, J., Manka, M., Krol, P., Giergiel, M., Uhl, T., & Pietrzyk, A. (2015). Review of the modular self reconfigurable robotic systems. 10th International Workshop on Robot Motion and Control (RoMoCo 2015), 182-187.
  • Fiaz, U.A., & Shamma, J.S. (2019). usBot: A modular robotic testbed for programmable self-assembly. IFAC - PapersOnLine, 52(15), 121-126.
  • Fukuda, T., Nakagawa, S., Kawauchi, Y., & Buss, M. (1989). Structure decision method for self organising robots based on cell structures – CEBOT. International Conference on Robotics and Automation, 2, 695-700.
  • Fukuda, T., & Nakagawa, S. (1988). Approach to the dynamically reconfigurable robotic system. Journal of Intelligent and Robotic Systems, 1(1), 55-72.
  • Fulton, J.A., & Schaub, H. (2021). Forward dynamics analysis of origami-folded deployable spacecraft structures. Acta Astronautica, 186, 549-561.
  • Goeller, M., Oberlaender, J., Uhl, K., Roennau, A., & Dillmann, R. (2012). Modular robots for on-orbit satellite servicing. 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2018-2023.
  • Hirai, M., Hirose, S., & Lee, W. (2013). Gunryu III: Reconfigurable magnetic wall-climbing robot for decommissioning of nuclear reactor. Advanced Robotics, 27(14), 1099-1111.
  • Holobut, P., Bordas, S.P., & Lengiewicz, J. (2020). Autonomous model-based assessment of mechanical failures of reconfigurable modular robots with a Conjugate Gradient solver. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 11696-11702.
  • Jahanshahi, M.R., Shen, W.M., Mondal, T.G., Abdelbarr, M., Masri, S.F., & Qidwai, U.A. (2017). Reconfigurable swarm robots for structural health monitoring: a brief review. International Journal of Intelligent Robotics and Applications, 1(3), 287-305.
  • Jeon, S., Hoshiar, A.K., Kim, S., Lee, S., Kim, E., Lee, S., Kim, K., Lee, J., Kim, J., & Choi, H. (2018). Improving guidewire-mediated steerability of a magnetically actuated flexible microrobot. Micro and Nano Systems Letters, 6:15.
  • Kirby, B.T., Aksak, B., Campbell, J.D., Hoburg, J.F., Mowry, T.C., Pillai, P., & Goldstein, S.C. (2007). A modular robotic system using magnetic force effectors. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2787-2793.
  • Knizhnik, G., & Yim, M. (2020). Design and Experiments with a Low-Cost Single-Motor Modular Aquatic Robot. 2020 17th International Conference on Ubiquitous Robots (UR), 233-240.
  • Lin, D., Jiao, N., Wang, Z., & Liu, L. (2021). A Magnetic Continuum Robot with Multi-Mode Control Using Opposite-Magnetized Magnets. IEEE Robotics and Automation Letters, 6(2), 2485-2492.
  • Lyder, A., Garcia, R.F.M., & Stoy, K. (2008). Mechanical design of Odin, an extendable heterogeneous deformable modular robot. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 883-889.
  • Mastrangeli, M., Abbasi, S., Varel, C., Van Hoof, C., Celis, J.P., & Bohringer, K.F. (2009). Self-assembly from milli- to nanoscales: Methods and applications. Journal of micromechanics and microengineering: structures, devices and systems, 19(8), 83001.
  • Murata, S., Kurokawa, H., & Kokaji, S. (1994). Self-assembling machine. Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1, 441-448.
  • Nguyen B.H., Son P.T., Kim, J.S., & Lee, J.W. (2020). Field-focused reconfigurable magnetic metamaterial for wireless power transfer and propulsion of an untethered microrobot. Journal of Magnetism and Magnetic Materials, 494, 165778.
  • Paulos, J., Eckenstein, N., Tosun, T., Seo, J., Davey, J., Greco, J., Kumar, V., & Yim, M. (2015). Automated Self-Assembly of Large Maritime Structures by a Team of Robotic Boats. IEEE Transactions on Automation Science and Engineering, 12(3), 958-968.
  • Pawashe, C., Floyd, S., & Sitti, M. (2009). Modeling and experimental characterization of an untethered magnetic micro-robot. International Journal of Robotics Research, 28(8), 1077-1094.
  • Pieters, R., Lombriser, S., Alvarez-Aguirre, A., & Nelson, B.J. (2016). Model Predictive Control of a Magnetically Guided Rolling Microrobot. IEEE Robotics and Automation Letters, 1(1), 455-460.
  • Ren, L., Nama, N., McNeill, J.M., Soto, F., Yan, Z., Liu, W., Wang, W., Wang, J., & Mallouk, T.E. (2019). 3D steerable, acoustically powered microswimmers for single-particle manipulation. Science Advances, 5(10), eaax3084.
  • Sawetzki, T., Rahmouni, S., Bechingera, C., & Marr, D.W. (2008). In situ assembly of linked geometrically coupled microdevices. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20141-5.
  • Sprowitz, A., Pouya, S., Bonardi, S., Van Den Kieboom, J., Mockel, R., Billard, A., Dillenbourg, P., & Ijspeert A. (2010). Roombots: Reconfigurable robots for adaptive furniture. IEEE Computational Intelligence Magazine, 5(3), 20-32.
  • Thalamy, P., Piranda, B., Naz, A., & Bourgeois, J. (2022). VisibleSim: A behavioral simulation framework for lattice modular robots. Robotics and Autonomous Systems, 147, 103913.
  • White, P.J., & Yim, M. (2010). Reliable external actuation for full reachability in robotic modular self-reconfiguration. International Journal of Robotics Research, 29(5), 598-612.
  • Wolfe, K.C., Moses, M.S., Kutzer, M.D., & Chirikjian, G.S. (2012). M3Express: A low-cost independently-mobile reconfigurable modular robot. 2012 IEEE International Conference on Robotics and Automation, 2704-2710.
  • Yang, Z., & Zhang, L. (2020). Magnetic Actuation Systems for Miniature Robots: A Review. Advanced Intelligent Systems, 2, 2000082.
  • Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., & Chirikjian, G.S. (2007). Modular selfreconfigurable robot systems [Grand challenges of robotics]. IEEE Robotics and Automation Magazine, 14(1), 43-52.
  • Zhou, H., Mayorga-Martinez, C.C., Pane, S., Zhang, L., & Pumera, M. (2021). Magnetically Driven Micro and Nanorobots. Chem. Rev., 121(8), 4999-5041.

DEVELOPING EXTERNAL MAGNETICALLY ACTUATION MODEL IN MICRO SCALE FOR A SELF-RECONFIGURABLE ROBOTIC SYSTEM

Year 2022, Volume: 25 Issue: 3, 434 - 449, 03.09.2022
https://doi.org/10.17780/ksujes.1137806

Abstract

Self-reconfigurable modular robots (SRMRs) are considered as autonomous kinematic machines that can change their own shape by rearranging the connectivity of their parts to perform new tasks, adapt to new circumstances or recover from damage. One of the main goals in SRMRs field is to reach to a million modules integrated self-reconfigurable systems. However, miniaturization efforts in self-reconfigurable modular robots bring some challenges such as storage and packaging. Developing externally actuated micro-robots can be a good alternative for miniaturization of SRMRs with the help of rapid enhancements in micro-manufacturing technologies encountered in the last decades. In this study a novel self-reconfiguration mechanism for micro-robots that are externally actuated by magnetic actuators is developed. In the study the motion of the magnets inside the microtubes under the effect of external magnetic field is investigated by using finite elements method. Dynamic model of the mechanism is obtained by using finite elements method and its applicability is exhibited by simulations. The results are compared with the theoretical values. It is envisioned that the study will contribute to micro-robotic systems in industry, defense industry and space missions as well as biomedical applications and medical robots.

References

  • Abbott, J.J., Peyer, K.E., Lagomarsino, M.C., Zhang, L., Dong, L., Kaliakatsos, I.K., & Nelson, B.J. (2009). How should microrobots swim? International Journal of Robotics Research, 28, 157-167.
  • Al Khatib, E., Bhattacharjee, A., Razzaghi, P., Rogowski, L.W., Kim, M.J., & Hurmuzlu, Y. (2020). Magnetically Actuated Simple Millirobots for Complex Navigation and Modular Assembly. IEEE Robotics and Automation Letters, 5(2), 2958-2965.
  • Ceylan, H., Giltinan, J., Kozielski, K., & Sitti, M. (2017). Mobile microrobots for bioengineering applications. Lab Chip, 17(10), 1705-1724.
  • Ciszewski, M., Buratowski, T., Giergiel, M., Małka, P., & Kurc, K. (2014). Virtual prototyping, design and analysis of an in-pipe inspection mobile robot. Journal of Theoretical and Applied Mechanics, 52(2), 417-429.
  • COMSOL Multiphysics® v. 6.0. www.comsol.com. COMSOL AB, Stockholm, Sweden.
  • Diller, E., Pawashe, C., Floyd, S. & Sitti, M. (2011). Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. International Journal of Robotics Research, 30(14), 1667-1680.
  • Ergeneman, O., Dogangil, G., Kummer, M.P., Abbott, J.J., Nazeeruddin, M.K., & Nelson, B.J. (2008). A magnetically controlled wireless optical oxygen sensor for intraocular measurements. IEEE Sensors Journal, 8(1), 29-37.
  • Feczko, J., Manka, M., Krol, P., Giergiel, M., Uhl, T., & Pietrzyk, A. (2015). Review of the modular self reconfigurable robotic systems. 10th International Workshop on Robot Motion and Control (RoMoCo 2015), 182-187.
  • Fiaz, U.A., & Shamma, J.S. (2019). usBot: A modular robotic testbed for programmable self-assembly. IFAC - PapersOnLine, 52(15), 121-126.
  • Fukuda, T., Nakagawa, S., Kawauchi, Y., & Buss, M. (1989). Structure decision method for self organising robots based on cell structures – CEBOT. International Conference on Robotics and Automation, 2, 695-700.
  • Fukuda, T., & Nakagawa, S. (1988). Approach to the dynamically reconfigurable robotic system. Journal of Intelligent and Robotic Systems, 1(1), 55-72.
  • Fulton, J.A., & Schaub, H. (2021). Forward dynamics analysis of origami-folded deployable spacecraft structures. Acta Astronautica, 186, 549-561.
  • Goeller, M., Oberlaender, J., Uhl, K., Roennau, A., & Dillmann, R. (2012). Modular robots for on-orbit satellite servicing. 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2018-2023.
  • Hirai, M., Hirose, S., & Lee, W. (2013). Gunryu III: Reconfigurable magnetic wall-climbing robot for decommissioning of nuclear reactor. Advanced Robotics, 27(14), 1099-1111.
  • Holobut, P., Bordas, S.P., & Lengiewicz, J. (2020). Autonomous model-based assessment of mechanical failures of reconfigurable modular robots with a Conjugate Gradient solver. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 11696-11702.
  • Jahanshahi, M.R., Shen, W.M., Mondal, T.G., Abdelbarr, M., Masri, S.F., & Qidwai, U.A. (2017). Reconfigurable swarm robots for structural health monitoring: a brief review. International Journal of Intelligent Robotics and Applications, 1(3), 287-305.
  • Jeon, S., Hoshiar, A.K., Kim, S., Lee, S., Kim, E., Lee, S., Kim, K., Lee, J., Kim, J., & Choi, H. (2018). Improving guidewire-mediated steerability of a magnetically actuated flexible microrobot. Micro and Nano Systems Letters, 6:15.
  • Kirby, B.T., Aksak, B., Campbell, J.D., Hoburg, J.F., Mowry, T.C., Pillai, P., & Goldstein, S.C. (2007). A modular robotic system using magnetic force effectors. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2787-2793.
  • Knizhnik, G., & Yim, M. (2020). Design and Experiments with a Low-Cost Single-Motor Modular Aquatic Robot. 2020 17th International Conference on Ubiquitous Robots (UR), 233-240.
  • Lin, D., Jiao, N., Wang, Z., & Liu, L. (2021). A Magnetic Continuum Robot with Multi-Mode Control Using Opposite-Magnetized Magnets. IEEE Robotics and Automation Letters, 6(2), 2485-2492.
  • Lyder, A., Garcia, R.F.M., & Stoy, K. (2008). Mechanical design of Odin, an extendable heterogeneous deformable modular robot. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 883-889.
  • Mastrangeli, M., Abbasi, S., Varel, C., Van Hoof, C., Celis, J.P., & Bohringer, K.F. (2009). Self-assembly from milli- to nanoscales: Methods and applications. Journal of micromechanics and microengineering: structures, devices and systems, 19(8), 83001.
  • Murata, S., Kurokawa, H., & Kokaji, S. (1994). Self-assembling machine. Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1, 441-448.
  • Nguyen B.H., Son P.T., Kim, J.S., & Lee, J.W. (2020). Field-focused reconfigurable magnetic metamaterial for wireless power transfer and propulsion of an untethered microrobot. Journal of Magnetism and Magnetic Materials, 494, 165778.
  • Paulos, J., Eckenstein, N., Tosun, T., Seo, J., Davey, J., Greco, J., Kumar, V., & Yim, M. (2015). Automated Self-Assembly of Large Maritime Structures by a Team of Robotic Boats. IEEE Transactions on Automation Science and Engineering, 12(3), 958-968.
  • Pawashe, C., Floyd, S., & Sitti, M. (2009). Modeling and experimental characterization of an untethered magnetic micro-robot. International Journal of Robotics Research, 28(8), 1077-1094.
  • Pieters, R., Lombriser, S., Alvarez-Aguirre, A., & Nelson, B.J. (2016). Model Predictive Control of a Magnetically Guided Rolling Microrobot. IEEE Robotics and Automation Letters, 1(1), 455-460.
  • Ren, L., Nama, N., McNeill, J.M., Soto, F., Yan, Z., Liu, W., Wang, W., Wang, J., & Mallouk, T.E. (2019). 3D steerable, acoustically powered microswimmers for single-particle manipulation. Science Advances, 5(10), eaax3084.
  • Sawetzki, T., Rahmouni, S., Bechingera, C., & Marr, D.W. (2008). In situ assembly of linked geometrically coupled microdevices. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20141-5.
  • Sprowitz, A., Pouya, S., Bonardi, S., Van Den Kieboom, J., Mockel, R., Billard, A., Dillenbourg, P., & Ijspeert A. (2010). Roombots: Reconfigurable robots for adaptive furniture. IEEE Computational Intelligence Magazine, 5(3), 20-32.
  • Thalamy, P., Piranda, B., Naz, A., & Bourgeois, J. (2022). VisibleSim: A behavioral simulation framework for lattice modular robots. Robotics and Autonomous Systems, 147, 103913.
  • White, P.J., & Yim, M. (2010). Reliable external actuation for full reachability in robotic modular self-reconfiguration. International Journal of Robotics Research, 29(5), 598-612.
  • Wolfe, K.C., Moses, M.S., Kutzer, M.D., & Chirikjian, G.S. (2012). M3Express: A low-cost independently-mobile reconfigurable modular robot. 2012 IEEE International Conference on Robotics and Automation, 2704-2710.
  • Yang, Z., & Zhang, L. (2020). Magnetic Actuation Systems for Miniature Robots: A Review. Advanced Intelligent Systems, 2, 2000082.
  • Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., & Chirikjian, G.S. (2007). Modular selfreconfigurable robot systems [Grand challenges of robotics]. IEEE Robotics and Automation Magazine, 14(1), 43-52.
  • Zhou, H., Mayorga-Martinez, C.C., Pane, S., Zhang, L., & Pumera, M. (2021). Magnetically Driven Micro and Nanorobots. Chem. Rev., 121(8), 4999-5041.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Halil İbrahim Dokuyucu 0000-0001-6991-1708

Nurhan Gürsel Özmen 0000-0002-7016-5201

Publication Date September 3, 2022
Submission Date June 29, 2022
Published in Issue Year 2022Volume: 25 Issue: 3

Cite

APA Dokuyucu, H. İ., & Gürsel Özmen, N. (2022). Kendi Kendini Konfigüre Edebilen Robotik Bir Sistem için Mikro Ölçekte Elektromanyetik Dış Eyleyici Tabanlı Hareket Modeli Geliştirilmesi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(3), 434-449. https://doi.org/10.17780/ksujes.1137806