Research Article
BibTex RIS Cite

KUM ZEMİNDE KAZIK TAŞIMA KAPASİTESİNİN LABORATUVAR MODEL KAZIK YÜKLEME DENEYLERİ İLE BELİRLENMESİ

Year 2025, Volume: 28 Issue: 1, 430 - 440, 03.03.2025

Abstract

Kazık ve kazıklı temellerin taşıma kapasiteleri genellikle arazi kazık yükleme deneylerinden ve ya literatürde kabul gören yaklaşımlardan faydalanılarak belirlenmektedir. Son yıllarda laboratuvar ortamında gerçekleştirilen model kazık yükleme deneylerinden de kazıkların taşıma kapasitelerinin belirlenmesi için çalışmalar devam etmektedir. Özellikle taşıma kapasitelerinin tamamını veya bir kısmını kazık-zemin sürtünmesi ile sağlayan kazıklar için ara yüzey sürtünme mukavemeti parametrelerinin doğru bir şekilde belirlenmesi, daha gerçekçi ve güvenilir tasarımların yapılmasına olanak sağlayacaktır. Bu çalışma kapsamında enstrümante edilen ve eksenel yükleme koşullarına maruz bırakılan alüminyum bir kazığın yük taşıma kapasitesi laboratuvar model kazık yükleme deneyleri ile araştırılmıştır. Deneysel ölçümlerden belirlenen yük-oturma eğrisi dikkate alınarak kazık taşıma kapasitesi literatürde kabul gören yöntemler kullanılarak belirlenmiştir. Elde edilen sonuçlar karşılaştırılarak benzerlikler ve farklılıklar yorumlanmıştır. Laboratuvar ortamında sınırlı bir durumu temsil eden model kazık yükleme deney sonuçlarından genel değerlendirmelerin yapılabilmesi için çalışmaların farklı kazık çapları ve türleri, zemin sınıfları ve yükleme koşulları dikkate alınarak desteklenmesi gerekmektedir. Böylelikle kazıkların taşıma kapasitesinin arazi kazık yükleme deneylerine alternatif bir yöntemle laboratuvar ortamında belirlenebileceği açıktır.

Supporting Institution

Destekleyen kurum yok

References

  • American Society of Civil Engineers. (1993). Design of pile foundations technical engineering and design guides. ASCE.
  • Baca, M., & Rybak, J. (2018). A first result of pipe pile static load test in small laboratory scale. E3S Web of Conferences, 251. https://doi.org/10.1051/e3sconf/201825100001
  • Baca, M., Lesny, J., Al-Khoury, R., & Wieczorek, M. (2019). Assessing the pile base capacity from a static load test on model piles. E3S Web of Conferences, 97. https://doi.org/10.1051/e3sconf/20199700011
  • Beer, E. E., & Wallays, M. (1972). Franki piles with overexpanded bases. La Technique des Travaux, 333.
  • Bowles, J. E. (1997). Foundation analysis and design (5th ed.). McGraw-Hill.
  • Broms, B. B. (1981). Precast piling practice. Thomas Telford Ltd.
  • Cerato, A., & Lutenegger, A. (2006). Specimen size and scale effects of direct shear box tests of sands. Geotechnical Testing Journal, 29(6), 507–516. https://doi.org/10.1520/GTJ100486
  • Chin, F. K. (1970). Estimation of the ultimate load of pile not carried to failure. In Proceedings of the 2nd Southeast Asian Conference on Soil Engineering (pp. 81–90). Singapore.
  • Dalkılıç, B. (2020). Göçme durumuna ulaşmamış kazık yükleme deneylerinde nihai kazık taşıma kapasitesinin belirlenmesi [Master’s thesis, İstanbul Teknik Üniversitesi / Fen Bilimleri Enstitüsü].
  • Das, B. M. (2007). Principles of foundation engineering (6th ed.). Thomson Canada Limited.
  • Davisson, M. T. (1972). High capacity piles. In Proceedings of Lecture Series on Innovations in Foundation Construction (pp. 81–112). American Society of Civil Engineers, Chicago.
  • Department of the Navy. (1988). NAVFAC Design Manuals 7.1 and 7.2: Foundations and earth structures. Alexandria, VA.
  • Fellenius, B. H. (2004). Unified design of piled foundations with emphasis on settlement analysis. In Geo-Trans Conference Proceedings (pp. 253–275). Geo-Institute, Los Angeles.
  • Fleming, W. G. K., Weltman, A. J., Randolph, M. F., & Elson, W. K. (2009). Piling engineering (3rd ed.). Taylor & Francis.
  • Göçek, H. (2001). Kazıkların eksenel yük taşıma kapasiteleri [Master’s thesis, Yıldız Teknik Üniversitesi].
  • Hansen, J. B. (1963). Hyperbolic stress-strain response of cohesive soils. Journal of the Soil Mechanics and Foundations Division, ASCE, 89(1).
  • Kishida, T., & Yoshimi, Y. (1981). A ring torsional apparatus for evaluations of friction between soil and metal surface. Geotechnical Testing Journal, 4(4), 145–152. https://doi.org/10.1520/GTJ10909J
  • Kulhavy, F. H. (1984). Limiting tip and side resistance—Fact or fallacy. In I. R. Meyer (Ed.), Analysis and design of pile foundation (pp. 80–88). ASCE.
  • Mazurkiewicz, B. K. (1972). Test loading of piles according to Polish regulations. Royal Swedish Academy of Engineering Sciences Commission on Pile Research, Stockholm.
  • Potyondy, J. G. (1961). Skin friction between various soils and construction materials. Geotechnique, 11(4), 339–353. https://doi.org/10.1680/geot.1961.11.4.339
  • Pulat, Ö. (2024). Kazık taşıma kapasitesinin statik formüller, nümerik analiz ve yükleme deneyleri kullanılarak belirlenmesi üzerine bir çalışma [Master’s thesis, İstanbul Teknik Üniversitesi / Fen Bilimleri Enstitüsü].
  • Rybak, J., & Krol, M. (2018). Limitations and risk related to static capacity testing of pile—Unfortunate case studies. MATEC Web of Conferences, 146. https://doi.org/10.1051/matecconf/201714600001
  • Samanta, M., Hazarika, H., & Yasufuku, N. (2018). Effect of roughness on interface shear behavior of sand with steel and concrete surfaces. Geomechanics and Engineering, 14(4), 387–398. https://doi.org/10.12989/gae.2018.14.4.387
  • Terzaghi, K., & Peck, R. B. (1948). Soil mechanics in engineering practice. John Wiley & Sons.
  • Tiwari, B., & Al-Adhadh, M. (2014). Influence of relative density on static soil-structure frictional resistance of dry and saturated sand. Geotechnical and Geological Engineering, 32(2), 411–427. https://doi.org/10.1007/s10706-013-9720-4
  • Toğrol, E. (1970). Kazıklı temeller. Temel Araştırma A.Ş. Yayınları No. 1. İstanbul.
  • Tomlinson, M. J. (2004). Pile design and construction in practice. E & FN Spon.
  • Tomlinson, M., & Woodward, J. (2006). Pile design and construction practice (5th ed.). CRC Press.
  • U.S. Department of Navy. (1986). NAVFAC Engineering Manual (EM 7.02).
  • Ünküp, L. (2024). Vida kazık kapasitelerinin arazi deneyleri ve sayısal analizlerle belirlenmesi [Master’s thesis, Yıldız Teknik Üniversitesi].
  • Yankı, O. (2015). İki yönlü statik yükleme deneyi ve nümerik analizlerle kazık davranışının incelenmesi [Master's thesis, İstanbul Teknik Üniversitesi].
  • Yenginar, Y. (2014). Kazıklı temellerde grup etkisinin model deneylerle araştırılması [Master’s thesis, Selçuk Üniversitesi].

DETERMINATION OF PILE BEARING CAPACITY IN SAND SOIL BY LABORATORY MODEL PILE LOADING TESTS

Year 2025, Volume: 28 Issue: 1, 430 - 440, 03.03.2025

Abstract

The bearing capacities of piles and piled foundations are typically determined through pile loading tests conducted in the field or by applying accepted methodologies from the literature. Recent studies have continued to investigate the potential for determining pile bearing capacity utilising model pile loading tests conducted in laboratory. For piles that derive all or part of their bearing capacity from pile-soil friction, there is a clear necessity for accurately determining the interface frictional strength parameters in developing more realistic and reliable designs. This study investigates the bearing capacity of an instrumented aluminium pile subjected to axial loading conditions using pile loading tests conducted in a laboratory. The pile's bearing capacity was determined from the load-settlement curve derived from measurements, in accordance with accepted methods from the literature. A comparison was subsequently done, with particular attention focused on identifying any similarities and differences in the results. While the results of these model pile loading tests represent a limited situation in laboratory conditions, they highlight the necessity for further experimental studies considering different pile dimensions and types, soils, and loading conditions. These findings indicate the potential for determining pile bearing capacity in laboratory conditions as an alternative to field pile loading tests.

References

  • American Society of Civil Engineers. (1993). Design of pile foundations technical engineering and design guides. ASCE.
  • Baca, M., & Rybak, J. (2018). A first result of pipe pile static load test in small laboratory scale. E3S Web of Conferences, 251. https://doi.org/10.1051/e3sconf/201825100001
  • Baca, M., Lesny, J., Al-Khoury, R., & Wieczorek, M. (2019). Assessing the pile base capacity from a static load test on model piles. E3S Web of Conferences, 97. https://doi.org/10.1051/e3sconf/20199700011
  • Beer, E. E., & Wallays, M. (1972). Franki piles with overexpanded bases. La Technique des Travaux, 333.
  • Bowles, J. E. (1997). Foundation analysis and design (5th ed.). McGraw-Hill.
  • Broms, B. B. (1981). Precast piling practice. Thomas Telford Ltd.
  • Cerato, A., & Lutenegger, A. (2006). Specimen size and scale effects of direct shear box tests of sands. Geotechnical Testing Journal, 29(6), 507–516. https://doi.org/10.1520/GTJ100486
  • Chin, F. K. (1970). Estimation of the ultimate load of pile not carried to failure. In Proceedings of the 2nd Southeast Asian Conference on Soil Engineering (pp. 81–90). Singapore.
  • Dalkılıç, B. (2020). Göçme durumuna ulaşmamış kazık yükleme deneylerinde nihai kazık taşıma kapasitesinin belirlenmesi [Master’s thesis, İstanbul Teknik Üniversitesi / Fen Bilimleri Enstitüsü].
  • Das, B. M. (2007). Principles of foundation engineering (6th ed.). Thomson Canada Limited.
  • Davisson, M. T. (1972). High capacity piles. In Proceedings of Lecture Series on Innovations in Foundation Construction (pp. 81–112). American Society of Civil Engineers, Chicago.
  • Department of the Navy. (1988). NAVFAC Design Manuals 7.1 and 7.2: Foundations and earth structures. Alexandria, VA.
  • Fellenius, B. H. (2004). Unified design of piled foundations with emphasis on settlement analysis. In Geo-Trans Conference Proceedings (pp. 253–275). Geo-Institute, Los Angeles.
  • Fleming, W. G. K., Weltman, A. J., Randolph, M. F., & Elson, W. K. (2009). Piling engineering (3rd ed.). Taylor & Francis.
  • Göçek, H. (2001). Kazıkların eksenel yük taşıma kapasiteleri [Master’s thesis, Yıldız Teknik Üniversitesi].
  • Hansen, J. B. (1963). Hyperbolic stress-strain response of cohesive soils. Journal of the Soil Mechanics and Foundations Division, ASCE, 89(1).
  • Kishida, T., & Yoshimi, Y. (1981). A ring torsional apparatus for evaluations of friction between soil and metal surface. Geotechnical Testing Journal, 4(4), 145–152. https://doi.org/10.1520/GTJ10909J
  • Kulhavy, F. H. (1984). Limiting tip and side resistance—Fact or fallacy. In I. R. Meyer (Ed.), Analysis and design of pile foundation (pp. 80–88). ASCE.
  • Mazurkiewicz, B. K. (1972). Test loading of piles according to Polish regulations. Royal Swedish Academy of Engineering Sciences Commission on Pile Research, Stockholm.
  • Potyondy, J. G. (1961). Skin friction between various soils and construction materials. Geotechnique, 11(4), 339–353. https://doi.org/10.1680/geot.1961.11.4.339
  • Pulat, Ö. (2024). Kazık taşıma kapasitesinin statik formüller, nümerik analiz ve yükleme deneyleri kullanılarak belirlenmesi üzerine bir çalışma [Master’s thesis, İstanbul Teknik Üniversitesi / Fen Bilimleri Enstitüsü].
  • Rybak, J., & Krol, M. (2018). Limitations and risk related to static capacity testing of pile—Unfortunate case studies. MATEC Web of Conferences, 146. https://doi.org/10.1051/matecconf/201714600001
  • Samanta, M., Hazarika, H., & Yasufuku, N. (2018). Effect of roughness on interface shear behavior of sand with steel and concrete surfaces. Geomechanics and Engineering, 14(4), 387–398. https://doi.org/10.12989/gae.2018.14.4.387
  • Terzaghi, K., & Peck, R. B. (1948). Soil mechanics in engineering practice. John Wiley & Sons.
  • Tiwari, B., & Al-Adhadh, M. (2014). Influence of relative density on static soil-structure frictional resistance of dry and saturated sand. Geotechnical and Geological Engineering, 32(2), 411–427. https://doi.org/10.1007/s10706-013-9720-4
  • Toğrol, E. (1970). Kazıklı temeller. Temel Araştırma A.Ş. Yayınları No. 1. İstanbul.
  • Tomlinson, M. J. (2004). Pile design and construction in practice. E & FN Spon.
  • Tomlinson, M., & Woodward, J. (2006). Pile design and construction practice (5th ed.). CRC Press.
  • U.S. Department of Navy. (1986). NAVFAC Engineering Manual (EM 7.02).
  • Ünküp, L. (2024). Vida kazık kapasitelerinin arazi deneyleri ve sayısal analizlerle belirlenmesi [Master’s thesis, Yıldız Teknik Üniversitesi].
  • Yankı, O. (2015). İki yönlü statik yükleme deneyi ve nümerik analizlerle kazık davranışının incelenmesi [Master's thesis, İstanbul Teknik Üniversitesi].
  • Yenginar, Y. (2014). Kazıklı temellerde grup etkisinin model deneylerle araştırılması [Master’s thesis, Selçuk Üniversitesi].
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Civil Geotechnical Engineering, Soil Mechanics in Civil Engineering, Civil Engineering (Other)
Journal Section Civil Engineering
Authors

Murat Gülen 0000-0003-4143-9266

Havvanur Kılıç 0000-0001-9455-1687

Publication Date March 3, 2025
Submission Date November 1, 2024
Acceptance Date January 21, 2025
Published in Issue Year 2025Volume: 28 Issue: 1

Cite

APA Gülen, M., & Kılıç, H. (2025). KUM ZEMİNDE KAZIK TAŞIMA KAPASİTESİNİN LABORATUVAR MODEL KAZIK YÜKLEME DENEYLERİ İLE BELİRLENMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(1), 430-440.