Research Article
BibTex RIS Cite

ÇİMENTO YERİNE KISMİ AHŞAP TABAN KÜLÜ İÇEREN HARÇLARIN MEKANİK ÖZELLİKLERİ

Year 2022, , 491 - 502, 03.09.2022
https://doi.org/10.17780/ksujes.1140309

Abstract

Portland çimentosu (PÇ) üretimi sırasında atmosfere salınan karbondioksit (CO2), küresel ısınmaya neden olan önemli faktörlerden biridir. Bu nedenle PÇ tüketimini azaltmak için farklı malzemeler üzerinde çalışmalar yapılmaktadır. Bu çalışmada, değişkenlerin (ahşap taban külü (ATK) oranı ve numune yaşı) tepki değişkenleri (ultrasonik atımlı dalga hızı, eğilmede çekme ve basma dayanımı) üzerindeki etki düzeyleri araştırılmıştır. Harç numuneleri; PÇ, ATK, CEN standart kum ve distile su kullanılarak üretilmiştir. Üretilen numuneler, deney gününe kadar suda kür işlemine tabi tutulmuştur. ATK ilave oranları bağlayıcı ağırlığınca %0, %5, %10, %20, %35 ve %50’dir. Sonuç olarak, optimum ATK kullanım oranının %5 olduğu tespit edilmiştir. Ek olarak, varyans analizi (ANOVA) ile tepki değişkenlerinin R2 değerlerinin yüksek olduğu (ultrasonik atımlı dalga hızı; 0.8925, eğilme dayanımı; 0.9356, basınç dayanımı; 0.9404) bulunmuştur. Bu durum, modellerin yüksek bir korelasyona sahip olduğunu göstermektedir. Ayrıca modellerdeki terimler, tepki değişkenleri üzerinde önemli bir etkiye sahiptir.

References

  • Abubakar, A. U., & Baharudin, K. S. (2012). Potential Use of Malaysian Thermal Power Plants. International Journal of Sustainable Construction Engineering & Technology, 3(2), 25-37.
  • Adamu, M. (2017). Engineering Properties of Industrial Wood Waste Ash-Concrete. International Journal of Advances in Construction Engineering, 1, 1-10.
  • Akinyemi, B. A., & Dai, C. (2020). Development of banana fibers and wood bottom ash modified cement mortars. Construction and Building Materials, 241, 118041. https://doi.org/10.1016/j.conbuildmat.2020.118041
  • Aydın, E. (2016). Novel coal bottom ash waste composites for sustainable construction. Construction and Building Materials, 124, 582-588. https://doi.org/10.1016/j.conbuildmat.2016.07.142
  • Ayobami, A. B. (2021). Performance of wood bottom ash in cement-based applications and comparison with other selected ashes: Overview. Resources, Conservation and Recycling, 166, 105351. https://doi.org/10.1016/j.resconrec.2020.105351
  • Baite, E., Messan, A., Hannawi, K., Tsobnang, F., & Prince, W. (2016). Physical and transfer properties of mortar containing coal bottom ash aggregates from Tefereyre (Niger). Construction and Building Materials, 125, 919-926. https://doi.org/10.1016/j.conbuildmat.2016.08.117
  • Chowdhury, S., Maniar, A., & Suganya, O. M. (2015). Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters. Journal of Advanced Research, 6(6), 907-913. https://doi.org/10.1016/j.jare.2014.08.006
  • ECOBA. (2016). Avrupa Birliği Ülkelerinde Taban Külü Kullanımı. http://www.ecoba.com/evjm,media/ccps/ECO_stat_2016_EU15_tab.pdf Accessed 31.12.2020.
  • Erdoğan, T. Y. (2015). Beton. Ankara: ODTÜ Geliştirme Vakfı Yayıncılık ve İletişim A.Ş., 6-8.
  • Ghorpade, V. G. (2012). Effect of wood waste ash on the strength characteristics of concrete. Nature Environment and Pollution Technology, 11(1), 121-124.
  • Khongpermgoson, P., Boonlao, K., Ananthanet, N., Thitithananon, T., Jaturapitakkul, C., Tangchirapat, W., & Ban, C. C. (2020). The mechanical properties and heat development behavior of high strength concrete containing high fineness coal bottom ash as a pozzolanic binder. Construction and Building Materials, 253, 119-239. https://doi.org/10.1016/j.conbuildmat.2020.119239
  • Kim, H. K., & Lee, H. K. (2015). Coal bottom ash in field of civil engineering: A review of advanced applications and environmental considerations. KSCE Journal of Civil Engineering, 19(6), 1802-1818. https://doi.org/10.1007/s12205-015-0282-7
  • Kim, H. K., & Lee, H. K. (2011). Use of power plant bottom ash as fine and coarse aggregates in high-strength concrete. Construction and Building Materials, 25(2), 1115-1122. https://doi.org/10.1016/j.conbuildmat.2010.06.065
  • Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601-605. https://doi.org/10.1016/j.cemconcomp.2008.12.010
  • Nader, V., Awwad, E., Wakim, J., & Haya, L. B. (2020). A study on cement-based mixes with partial wood bottom ash replacement. Waste and Resource Management, 173(1), 15-23. https://doi.org/10.1680/jwarm.19.00005
  • Nikbin, I. M., Rahimi, S., Allahyari, R. H., & Damadi, M. (2016). A comprehensive analytical study on the mechanical properties of concrete containing waste bottom ash as natural aggregate replacement. Construction and Building Materials, 121, 746-759. https://doi.org/10.1016/j.conbuildmat.2016.06.078
  • Oruji, S., Brake, N. A., Nalluri, L., & Guduru, R. K. (2017). Strength activity and microstructure of blended ultra-fine coal bottom ash-cement mortar. Construction and Building Materials, 153, 317-326. https://doi.org/10.1016/j.conbuildmat.2017.07.088
  • Provis, J. L., & Deventer, J. S. J. (2014). Alkali Activated Materials: State of the Art Report.
  • Raheem, A. A. & Adenuga, O. (2013). Wood Ash from Bread Bakery as Partial Replacement for Cement in Concrete. Int J Sustainable Constr Eng Technol, 4, 75-81.
  • Ramos, T., Matos, A. M., & Sousa-Coutinho, J. (2013). Mortar with wood waste ash: Mechanical strength carbonation resistance and ASR expansion. Construction and Building Materials, 49, 343-351. https://doi.org/10.1016/j.conbuildmat.2013.08.026
  • Singh, M. (2018). Waste and Supplementary Cementitious Materials in Concrete. Woodhead Publishing, 3-50. StatEase. Varyans Analizi (ANOVA). (2021). https://www.statease.com/docs/v11/contents/analysis/anova-outputK/ Accessed 23.11.2021.
  • THBB. (2019). Türkiye Hazır Beton Sektörü İstatistikleri.
  • TS EN 1015-3. (2000). Kagir harcı-Deney metotları-Bölüm 3: Taze harç kıvamının tayini (yayılma tablası ile). Ankara: TSE.
  • TS EN 196-1. (2016). Çimento deney yöntemleri-Bölüm 1: Dayanım tayini. Ankara: TSE.
  • Ulewicz, M., & Jura, J. (2017). Effect of fly and bottom ash mixture from combustion of biomass on strength of cement mortar. E3S Web of Conferences, (18). https://doi.org/10.1051/e3sconf/201712301029

MECHANICAL PROPERTIES OF MORTARS CONTAINING PARTIALLY WOOD BOTTOM ASH INSTEAD OF CEMENT

Year 2022, , 491 - 502, 03.09.2022
https://doi.org/10.17780/ksujes.1140309

Abstract

Carbon dioxide (CO2) released into the atmosphere during the production of Portland cement (PC) is one of the important factors causing global warming. Therefore, studies are carried out on different materials to reduce PC consumption. The effect levels of the wood bottom ash (WBA) ratio and specimen age on the response variables (compressive strength, flexural strength, and ultrasonic pulse velocity) were investigated in this study. Mortar specimens were produced using PC, WBA, CEN standard sand, and distilled water. The produced specimens were cured in water until the test day. WBA ratios are 0%, 5%, 10%, 20%, 35% and 50% by weight of binder. As a result, it was determined that the optimum WBA ratio was 5%. In addition, R2 values of response variables were found to be high (ultrasonic pulsed wave velocity; 0.8925, flexural strength; 0.9356, compressive strength; 0.9404) by analysis of variance (ANOVA). This shows that the models have a high correlation. Moreover, the terms added to the models have a significant effect on the responses.

Thanks

All authors thanks to Tekirdağ Namık Kemal University.

References

  • Abubakar, A. U., & Baharudin, K. S. (2012). Potential Use of Malaysian Thermal Power Plants. International Journal of Sustainable Construction Engineering & Technology, 3(2), 25-37.
  • Adamu, M. (2017). Engineering Properties of Industrial Wood Waste Ash-Concrete. International Journal of Advances in Construction Engineering, 1, 1-10.
  • Akinyemi, B. A., & Dai, C. (2020). Development of banana fibers and wood bottom ash modified cement mortars. Construction and Building Materials, 241, 118041. https://doi.org/10.1016/j.conbuildmat.2020.118041
  • Aydın, E. (2016). Novel coal bottom ash waste composites for sustainable construction. Construction and Building Materials, 124, 582-588. https://doi.org/10.1016/j.conbuildmat.2016.07.142
  • Ayobami, A. B. (2021). Performance of wood bottom ash in cement-based applications and comparison with other selected ashes: Overview. Resources, Conservation and Recycling, 166, 105351. https://doi.org/10.1016/j.resconrec.2020.105351
  • Baite, E., Messan, A., Hannawi, K., Tsobnang, F., & Prince, W. (2016). Physical and transfer properties of mortar containing coal bottom ash aggregates from Tefereyre (Niger). Construction and Building Materials, 125, 919-926. https://doi.org/10.1016/j.conbuildmat.2016.08.117
  • Chowdhury, S., Maniar, A., & Suganya, O. M. (2015). Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters. Journal of Advanced Research, 6(6), 907-913. https://doi.org/10.1016/j.jare.2014.08.006
  • ECOBA. (2016). Avrupa Birliği Ülkelerinde Taban Külü Kullanımı. http://www.ecoba.com/evjm,media/ccps/ECO_stat_2016_EU15_tab.pdf Accessed 31.12.2020.
  • Erdoğan, T. Y. (2015). Beton. Ankara: ODTÜ Geliştirme Vakfı Yayıncılık ve İletişim A.Ş., 6-8.
  • Ghorpade, V. G. (2012). Effect of wood waste ash on the strength characteristics of concrete. Nature Environment and Pollution Technology, 11(1), 121-124.
  • Khongpermgoson, P., Boonlao, K., Ananthanet, N., Thitithananon, T., Jaturapitakkul, C., Tangchirapat, W., & Ban, C. C. (2020). The mechanical properties and heat development behavior of high strength concrete containing high fineness coal bottom ash as a pozzolanic binder. Construction and Building Materials, 253, 119-239. https://doi.org/10.1016/j.conbuildmat.2020.119239
  • Kim, H. K., & Lee, H. K. (2015). Coal bottom ash in field of civil engineering: A review of advanced applications and environmental considerations. KSCE Journal of Civil Engineering, 19(6), 1802-1818. https://doi.org/10.1007/s12205-015-0282-7
  • Kim, H. K., & Lee, H. K. (2011). Use of power plant bottom ash as fine and coarse aggregates in high-strength concrete. Construction and Building Materials, 25(2), 1115-1122. https://doi.org/10.1016/j.conbuildmat.2010.06.065
  • Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601-605. https://doi.org/10.1016/j.cemconcomp.2008.12.010
  • Nader, V., Awwad, E., Wakim, J., & Haya, L. B. (2020). A study on cement-based mixes with partial wood bottom ash replacement. Waste and Resource Management, 173(1), 15-23. https://doi.org/10.1680/jwarm.19.00005
  • Nikbin, I. M., Rahimi, S., Allahyari, R. H., & Damadi, M. (2016). A comprehensive analytical study on the mechanical properties of concrete containing waste bottom ash as natural aggregate replacement. Construction and Building Materials, 121, 746-759. https://doi.org/10.1016/j.conbuildmat.2016.06.078
  • Oruji, S., Brake, N. A., Nalluri, L., & Guduru, R. K. (2017). Strength activity and microstructure of blended ultra-fine coal bottom ash-cement mortar. Construction and Building Materials, 153, 317-326. https://doi.org/10.1016/j.conbuildmat.2017.07.088
  • Provis, J. L., & Deventer, J. S. J. (2014). Alkali Activated Materials: State of the Art Report.
  • Raheem, A. A. & Adenuga, O. (2013). Wood Ash from Bread Bakery as Partial Replacement for Cement in Concrete. Int J Sustainable Constr Eng Technol, 4, 75-81.
  • Ramos, T., Matos, A. M., & Sousa-Coutinho, J. (2013). Mortar with wood waste ash: Mechanical strength carbonation resistance and ASR expansion. Construction and Building Materials, 49, 343-351. https://doi.org/10.1016/j.conbuildmat.2013.08.026
  • Singh, M. (2018). Waste and Supplementary Cementitious Materials in Concrete. Woodhead Publishing, 3-50. StatEase. Varyans Analizi (ANOVA). (2021). https://www.statease.com/docs/v11/contents/analysis/anova-outputK/ Accessed 23.11.2021.
  • THBB. (2019). Türkiye Hazır Beton Sektörü İstatistikleri.
  • TS EN 1015-3. (2000). Kagir harcı-Deney metotları-Bölüm 3: Taze harç kıvamının tayini (yayılma tablası ile). Ankara: TSE.
  • TS EN 196-1. (2016). Çimento deney yöntemleri-Bölüm 1: Dayanım tayini. Ankara: TSE.
  • Ulewicz, M., & Jura, J. (2017). Effect of fly and bottom ash mixture from combustion of biomass on strength of cement mortar. E3S Web of Conferences, (18). https://doi.org/10.1051/e3sconf/201712301029
There are 25 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Civil Engineering
Authors

Mehmet Timur Cihan 0000-0001-5555-5589

Yunus Emre Avşar 0000-0001-5197-0267

Publication Date September 3, 2022
Submission Date July 10, 2022
Published in Issue Year 2022

Cite

APA Cihan, M. T., & Avşar, Y. E. (2022). MECHANICAL PROPERTIES OF MORTARS CONTAINING PARTIALLY WOOD BOTTOM ASH INSTEAD OF CEMENT. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(3), 491-502. https://doi.org/10.17780/ksujes.1140309