Research Article
BibTex RIS Cite

NEHİR TİPİ HİDROELEKTRİK GÜÇ SANTRALLERİNİN RAMPA OLAYLARININ MEVSİMSEL DEĞERLENDİRİLMESİ

Year 2023, , 57 - 66, 15.03.2023
https://doi.org/10.17780/ksujes.1172594

Abstract

Bu çalışma, nehir tipi hidroelektrik santrallerinin (NHES) rampa oranlarını (üretim değişimlerini) mevsimsel olarak incelemeyi amaçlamaktadır. Bu amaçla öncelikle 01 Aralık 2020 ile 01 Aralık 2021 tarihleri arasında Türkiye NHES verileri elde edilmiştir. Elde edilen veriler saatlik çözünürlükte olup 560 tesise aittir. Çalışmada kullanılan santrallerin toplam kurulu gücü 7897,06 MW'dır. Bu çalışmada, 1, 3 ve 6 saatlik periyotlarda kurulu gücün %5, %7,5 ve %10'luk rampa oranlarını incelemek için histogram alanları kullanılmıştır. Yapılan incelemeler sonucunda ilkbahar, yaz, sonbahar ve kış mevsimlerinin 6 saatlik zaman dilimlerinde %5 ve üzerindeki rampaların kümülatif histogram alanları sırasıyla 39430.94, 22117.72, 17811.76 ve 34914.32 olarak hesaplanmıştır. Bu rampalar yönlerine göre değerlendirildiğinde ilkbahar, yaz, sonbahar ve kış aylarında pozitif rampa (jenerasyon artışı) histogram alanları sırasıyla 20052.1, 10945.74, 9095,8 ve 17303.19'dur. Negatif rampaların (üretim azalması) ilkbahar, yaz, sonbahar ve kış aylarında histogram alanları sırasıyla 19378.84, 11171.98, 8715.96 ve 17611.13'tür. Tüm bu sonuçlara göre Türkiye'nin NHES üretimlerinde rampa olayları en çok bahar mevsiminde meydana geldi. Ayrıca olumlu rampa olaylarının her mevsimde daha fazla meydana geldiği sonucuna da ulaşılmıştır.

References

  • Andritz Hydro. (2015). Mini compact hydro. https://www.andritz.com/resource/blob/33256/4cc3cf70a02bca500e3c8e0915b31c03/hy-mini-compact-brochure-en-data.pdf
  • Aylık Elektrik Üretim-Tüketim Raporları. (n.d.). Retrieved April 26, 2022, from https://www.teias.gov.tr/tr-TR/aylik-elektrik-uretim-tuketim-raporlari
  • Bilgili, M., Bilirgen, H., Ozbek, A., Ekinci, F., & Demirdelen, T. (2018). The role of hydropower installations for sustainable energy development in Turkey and the world. Renewable Energy, 126, 755–764. https://doi.org/10.1016/j.renene.2018.03.089
  • Chen, X., Du, Y., & Wen, H. (2017). Forecasting based power ramp-rate control for PV systems without energy storage. 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia, IFEEC - ECCE Asia 2017, 733–738. https://doi.org/10.1109/IFEEC.2017.7992130
  • Dalcalı, A., Çelik, E., & Arslan, S. (2012). Mikro ve mini hidroelektrik santralleri için mikrodenetleyici tabanlı mikrodenetleyici tabanlı bir elektronik governor sisteminin tasarımı. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(2), 130–135.
  • Datta, D. (2013). Unit commitment problem with ramp rate constraint using a binary-real-coded genetic algorithm. Applied Soft Computing Journal, 13(9), 3873–3883. https://doi.org/10.1016/j.asoc.2013.05.002
  • De La Parra, I., Marcos, J., García, M., & Marroyo, L. (2015). Control strategies to use the minimum energy storage requirement for PV power ramp-rate control. Solar Energy, 111, 332–343. https://doi.org/10.1016/j.solener.2014.10.038
  • Dorado-Moreno, M., Navarin, N., Gutiérrez, P. A., Prieto, L., Sperduti, A., Salcedo-Sanz, S., & Hervás-Martínez, C. (2020). Multi-task learning for the prediction of wind power ramp events with deep neural networks. Neural Networks, 123, 401–411. https://doi.org/10.1016/j.neunet.2019.12.017
  • Emir, A., Bozkuş, Z., & Yanmaz, A. M. (2014). Nehir Tipi Hidroelektrik Santrallerin Bilgisayar Destekli Ön Tasarımı. İMO Teknik Dergi, 6925–6942.
  • European Small Hydropower Association - ESHA. (2004). Guide on How to Develop a Small Hydropower Plant. European Small Hydropower Association, 296. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.172.1731&rep=rep1&type=pdf
  • Frate, G. F., Cherubini, P., Tacconelli, C., Micangeli, A., Ferrari, L., & Desideri, U. (2019). Ramp rate abatement for wind power plants: A techno-economic analysis. Applied Energy, 254(August), 113600. https://doi.org/10.1016/j.apenergy.2019.113600
  • González-Aparicio, I., & Zucker, A. (2015). Impact of wind power uncertainty forecasting on the market integration of wind energy in Spain. Applied Energy, 159, 334–349. https://doi.org/10.1016/j.apenergy.2015.08.104
  • Karadol, İ., Yıldız, C., & Şekkeli, M. (2020). Türkiye’de RES Üretimlerindeki Rampa Olaylarının Minimize Edilmesi için Bölgesel Tesis Konumu Belirleyen Yeni Bir Optimizasyon Modeli. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 8(4), 959–971. https://doi.org/10.29109/gujsc.711743
  • Kayahan, İ. (2019). Optimal Bidding and Real-Time Operation Strategies for Wind and Pumped Hydro Storage Systems Using Stochastic Programming and Model Predictive Control. In YÖK Tez Merkezi (Vol. 8, Issue 5).
  • Kim, M. J., & Kim, T. S. (2019). Integration of compressed air energy storage and gas turbine to improve the ramp rate. Applied Energy, 247(April), 363–373. https://doi.org/10.1016/j.apenergy.2019.04.046
  • Kougias, I., Szabó, S., Monforti-Ferrario, F., Huld, T., & Bódis, K. (2016). A methodology for optimization of the complementarity between small-hydropower plants and solar PV systems. Renewable Energy, 87, 1023–1030. https://doi.org/10.1016/j.renene.2015.09.073
  • Laghari, J. A., Mokhlis, H., Bakar, A. H. A., & Mohammad, H. (2013). A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology. Renewable and Sustainable Energy Reviews, 20, 279–293. https://doi.org/10.1016/j.rser.2012.12.002
  • Li, G., & Gu, C. (2020). Economic Dispatch of Combined Heat and Power Energy Systems Using Electric Boiler to Accommodate Wind Power. IEEE Access, 8, 41288–41297. https://doi.org/10.1109/ACCESS.2020.2968583
  • Liu, G., Zhou, J., Jia, B., He, F., Yang, Y., & Sun, N. (2019). Advance short-term wind energy quality assessment based on instantaneous standard deviation and variogram of wind speed by a hybrid method. Applied Energy, 238(January), 643–667. https://doi.org/10.1016/j.apenergy.2019.01.105
  • Martins, J., Spataru, S., Sera, D., Stroe, D. I., & Lashab, A. (2019). Comparative study of ramp-rate control algorithms for PV with energy storage systems. Energies, 12(7). https://doi.org/10.3390/en12071342
  • Mercan, B. (2014). Orta Ölçekli Hidroelektrik Enerji Tesislerinin İncelenmesi için Örnek Bir Çalişma- Bağişli Regülatörü ve Hes. In İstanbul Teknik Üniversitesi /Enerji Enstitüsü (Vol. 1). http://www.springer.com/series/15440%0Apapers://ae99785b-2213-416d-aa7e-3a12880cc9b9/Paper/p18311
  • Özdemir, M. T. (2012). Çok Küçük Hidroelektrik Santrallerde Akıllı Denetleyici Destekli Aktif ve Reaktif Güç Kontrolü.
  • Özyön, S., & Aydin, D. (2013). Incremental artificial bee colony with local search to economic dispatch problem with ramp rate limits and prohibited operating zones. Energy Conversion and Management, 65, 397–407. https://doi.org/10.1016/j.enconman.2012.07.005
  • REN21. (2021). Renewables 2021 Global Status Report. In Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector. https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf%0Ahttp://www.ren21.net/ resources/publications/
  • Sangal, S., Garg, A., & Kumar, D. (2013). Review of Optimal Selection of Turbines for Hydroelectric Projects. Review of Optimal Selection of Turbines for Hydroelectric Projects, 3(3), 424–430.
  • Süme, V., & Fırat, S. S. (2020). Hidroelektrik Santraller ve Rize İlinde Bulunan Hidroelektrik Santrallerin Şehir ve Doğu Karadeniz Havzası İçin Önemi. Türk Hidrolik Dergisi, 1–15.
  • Teleke, S., Baran, M. E., Bhattacharya, S., & Huang, A. (2010). Validation of battery energy storage control for wind farm dispatching. IEEE PES General Meeting, PES 2010, 24(3), 725–732. https://doi.org/10.1109/PES.2010.5589640
  • Temiz, A. (2015). Nehir Tipi Hidroelektrik Enerji Santrali Uygulamaları. In III. Enerji Verimliliği Günleri. Ueckerdt, F., Brecha, R., & Luderer, G. (2015). Analyzing major challenges of wind and solar variability in power systems. Renewable Energy, 81, 1–10. https://doi.org/10.1016/j.renene.2015.03.002
  • Villarreal, J. L. S., Avalos, P. G., Galvan Gonzalez, S. R., & Dominguez Mota, F. J. (2019). Estimate electrical potential of municipal wastewater through a micro-hydroelectric plant. 2018 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2018, Ropec, 7–12. https://doi.org/10.1109/ROPEC.2018.8661411
  • Yıldız, V. (2015). Numerical simulation model of run of river hydropower plants: concepts, numerical modeling, turbine system and selection, and design optimization.
  • Zhao, J., Abedi, S., He, M., Du, P., Sharma, S., & Blevins, B. (2017). Quantifying Risk of Wind Power Ramps in ERCOT. IEEE Transactions on Power Systems, 32(6), 4970–4971. https://doi.org/10.1109/TPWRS.2017.2678761

SEASONAL ASSESSMENT OF RUN-OF-RIVER HYDROELECTRIC POWER PLANT RAMP EVENTS

Year 2023, , 57 - 66, 15.03.2023
https://doi.org/10.17780/ksujes.1172594

Abstract

This study aims to seasonally examine run-of-river type hydroelectric power plants' ramp rates (generation changes) (RoRHPP). Turkey RoRHPP generations were obtained for this objective between 01 December 2020 and 01 December 2021. Obtained data are hourly resolution and belong to 560 plants. The total installed power of the plants used in work is 7897.06 MW. This study used histogram fields to examine ramp rates of 5%, 7.5%, and 10% of the installed power in 1, 3, and 6-hour periods. As a result of the investigations, the cumulative histogram areas of the ramps of 5% and above in 6 hours temporal periods of the spring, summer, autumn, and winter seasons were calculated as 39430.94, 22117.72, 17811.76, and 34914.32, respectively. When these ramps are evaluated according to their directions, the histogram areas of positive ramp (generation increase) in spring, summer, autumn, and winter are 20052.1, 10945.74, 9095.8, and 17303.19, respectively. The histogram areas of the negative ramps (reduction of generation) in spring, summer, autumn, and winter are 19378.84, 11171.98, 8715.96, and 17611.13, respectively. According to all these results, ramp events in Turkey's RoRHPP productions occurred the most in the spring. In addition, It was also concluded that positive ramp events occurred more in all seasons.

References

  • Andritz Hydro. (2015). Mini compact hydro. https://www.andritz.com/resource/blob/33256/4cc3cf70a02bca500e3c8e0915b31c03/hy-mini-compact-brochure-en-data.pdf
  • Aylık Elektrik Üretim-Tüketim Raporları. (n.d.). Retrieved April 26, 2022, from https://www.teias.gov.tr/tr-TR/aylik-elektrik-uretim-tuketim-raporlari
  • Bilgili, M., Bilirgen, H., Ozbek, A., Ekinci, F., & Demirdelen, T. (2018). The role of hydropower installations for sustainable energy development in Turkey and the world. Renewable Energy, 126, 755–764. https://doi.org/10.1016/j.renene.2018.03.089
  • Chen, X., Du, Y., & Wen, H. (2017). Forecasting based power ramp-rate control for PV systems without energy storage. 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia, IFEEC - ECCE Asia 2017, 733–738. https://doi.org/10.1109/IFEEC.2017.7992130
  • Dalcalı, A., Çelik, E., & Arslan, S. (2012). Mikro ve mini hidroelektrik santralleri için mikrodenetleyici tabanlı mikrodenetleyici tabanlı bir elektronik governor sisteminin tasarımı. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(2), 130–135.
  • Datta, D. (2013). Unit commitment problem with ramp rate constraint using a binary-real-coded genetic algorithm. Applied Soft Computing Journal, 13(9), 3873–3883. https://doi.org/10.1016/j.asoc.2013.05.002
  • De La Parra, I., Marcos, J., García, M., & Marroyo, L. (2015). Control strategies to use the minimum energy storage requirement for PV power ramp-rate control. Solar Energy, 111, 332–343. https://doi.org/10.1016/j.solener.2014.10.038
  • Dorado-Moreno, M., Navarin, N., Gutiérrez, P. A., Prieto, L., Sperduti, A., Salcedo-Sanz, S., & Hervás-Martínez, C. (2020). Multi-task learning for the prediction of wind power ramp events with deep neural networks. Neural Networks, 123, 401–411. https://doi.org/10.1016/j.neunet.2019.12.017
  • Emir, A., Bozkuş, Z., & Yanmaz, A. M. (2014). Nehir Tipi Hidroelektrik Santrallerin Bilgisayar Destekli Ön Tasarımı. İMO Teknik Dergi, 6925–6942.
  • European Small Hydropower Association - ESHA. (2004). Guide on How to Develop a Small Hydropower Plant. European Small Hydropower Association, 296. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.172.1731&rep=rep1&type=pdf
  • Frate, G. F., Cherubini, P., Tacconelli, C., Micangeli, A., Ferrari, L., & Desideri, U. (2019). Ramp rate abatement for wind power plants: A techno-economic analysis. Applied Energy, 254(August), 113600. https://doi.org/10.1016/j.apenergy.2019.113600
  • González-Aparicio, I., & Zucker, A. (2015). Impact of wind power uncertainty forecasting on the market integration of wind energy in Spain. Applied Energy, 159, 334–349. https://doi.org/10.1016/j.apenergy.2015.08.104
  • Karadol, İ., Yıldız, C., & Şekkeli, M. (2020). Türkiye’de RES Üretimlerindeki Rampa Olaylarının Minimize Edilmesi için Bölgesel Tesis Konumu Belirleyen Yeni Bir Optimizasyon Modeli. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 8(4), 959–971. https://doi.org/10.29109/gujsc.711743
  • Kayahan, İ. (2019). Optimal Bidding and Real-Time Operation Strategies for Wind and Pumped Hydro Storage Systems Using Stochastic Programming and Model Predictive Control. In YÖK Tez Merkezi (Vol. 8, Issue 5).
  • Kim, M. J., & Kim, T. S. (2019). Integration of compressed air energy storage and gas turbine to improve the ramp rate. Applied Energy, 247(April), 363–373. https://doi.org/10.1016/j.apenergy.2019.04.046
  • Kougias, I., Szabó, S., Monforti-Ferrario, F., Huld, T., & Bódis, K. (2016). A methodology for optimization of the complementarity between small-hydropower plants and solar PV systems. Renewable Energy, 87, 1023–1030. https://doi.org/10.1016/j.renene.2015.09.073
  • Laghari, J. A., Mokhlis, H., Bakar, A. H. A., & Mohammad, H. (2013). A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology. Renewable and Sustainable Energy Reviews, 20, 279–293. https://doi.org/10.1016/j.rser.2012.12.002
  • Li, G., & Gu, C. (2020). Economic Dispatch of Combined Heat and Power Energy Systems Using Electric Boiler to Accommodate Wind Power. IEEE Access, 8, 41288–41297. https://doi.org/10.1109/ACCESS.2020.2968583
  • Liu, G., Zhou, J., Jia, B., He, F., Yang, Y., & Sun, N. (2019). Advance short-term wind energy quality assessment based on instantaneous standard deviation and variogram of wind speed by a hybrid method. Applied Energy, 238(January), 643–667. https://doi.org/10.1016/j.apenergy.2019.01.105
  • Martins, J., Spataru, S., Sera, D., Stroe, D. I., & Lashab, A. (2019). Comparative study of ramp-rate control algorithms for PV with energy storage systems. Energies, 12(7). https://doi.org/10.3390/en12071342
  • Mercan, B. (2014). Orta Ölçekli Hidroelektrik Enerji Tesislerinin İncelenmesi için Örnek Bir Çalişma- Bağişli Regülatörü ve Hes. In İstanbul Teknik Üniversitesi /Enerji Enstitüsü (Vol. 1). http://www.springer.com/series/15440%0Apapers://ae99785b-2213-416d-aa7e-3a12880cc9b9/Paper/p18311
  • Özdemir, M. T. (2012). Çok Küçük Hidroelektrik Santrallerde Akıllı Denetleyici Destekli Aktif ve Reaktif Güç Kontrolü.
  • Özyön, S., & Aydin, D. (2013). Incremental artificial bee colony with local search to economic dispatch problem with ramp rate limits and prohibited operating zones. Energy Conversion and Management, 65, 397–407. https://doi.org/10.1016/j.enconman.2012.07.005
  • REN21. (2021). Renewables 2021 Global Status Report. In Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector. https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf%0Ahttp://www.ren21.net/ resources/publications/
  • Sangal, S., Garg, A., & Kumar, D. (2013). Review of Optimal Selection of Turbines for Hydroelectric Projects. Review of Optimal Selection of Turbines for Hydroelectric Projects, 3(3), 424–430.
  • Süme, V., & Fırat, S. S. (2020). Hidroelektrik Santraller ve Rize İlinde Bulunan Hidroelektrik Santrallerin Şehir ve Doğu Karadeniz Havzası İçin Önemi. Türk Hidrolik Dergisi, 1–15.
  • Teleke, S., Baran, M. E., Bhattacharya, S., & Huang, A. (2010). Validation of battery energy storage control for wind farm dispatching. IEEE PES General Meeting, PES 2010, 24(3), 725–732. https://doi.org/10.1109/PES.2010.5589640
  • Temiz, A. (2015). Nehir Tipi Hidroelektrik Enerji Santrali Uygulamaları. In III. Enerji Verimliliği Günleri. Ueckerdt, F., Brecha, R., & Luderer, G. (2015). Analyzing major challenges of wind and solar variability in power systems. Renewable Energy, 81, 1–10. https://doi.org/10.1016/j.renene.2015.03.002
  • Villarreal, J. L. S., Avalos, P. G., Galvan Gonzalez, S. R., & Dominguez Mota, F. J. (2019). Estimate electrical potential of municipal wastewater through a micro-hydroelectric plant. 2018 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2018, Ropec, 7–12. https://doi.org/10.1109/ROPEC.2018.8661411
  • Yıldız, V. (2015). Numerical simulation model of run of river hydropower plants: concepts, numerical modeling, turbine system and selection, and design optimization.
  • Zhao, J., Abedi, S., He, M., Du, P., Sharma, S., & Blevins, B. (2017). Quantifying Risk of Wind Power Ramps in ERCOT. IEEE Transactions on Power Systems, 32(6), 4970–4971. https://doi.org/10.1109/TPWRS.2017.2678761
There are 31 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Electrical and Electronics Engineering
Authors

İsrafil Karadöl 0000-0002-9239-0565

Fatma Avli Fırış 0000-0003-4879-1932

Mustafa Şekkeli 0000-0002-1641-3243

Publication Date March 15, 2023
Submission Date September 8, 2022
Published in Issue Year 2023

Cite

APA Karadöl, İ., Avli Fırış, F., & Şekkeli, M. (2023). SEASONAL ASSESSMENT OF RUN-OF-RIVER HYDROELECTRIC POWER PLANT RAMP EVENTS. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 57-66. https://doi.org/10.17780/ksujes.1172594