Research Article
BibTex RIS Cite

PRODUCTION OF ACTIVATED CARBON FROM HYDROTHERMAL PRE-TREATED EUCALYPTUS ROOTWOODS BY PROLYSIS METHOD

Year 2023, , 653 - 662, 03.09.2023
https://doi.org/10.17780/ksujes.1246606

Abstract

In this study, root woods of eucalyptus tree (Eucalyptus grandis) grown in Tarsus-Karabucak region were used as raw material to obtain activated carbon. Activated carbons were produced in two stages using hydrothermal and pyrolysis methods. Firstly, the lignocellulosic material was kept for 24 hours in a closed autoclave system at 200°C and 225°C by utilizing the supercritical property of water in the hydrothermal method and then the samples were mixed with H3PO4 (phosphoric acid) at a ratio of 1:1 for chemical activation. In the pyrolysis stage, the carbonization process was carried out at 400℃, 500℃, 600℃ and 700℃ in a nitrogen environment for 30 minutes. The obtained activated carbon samples were characterized using scanning electron microscopy (SEM), Brunauer -Emmett - Teller (BET), Fourier transform infrared (FT-IR), and elemental analysis techniques. According to the results obtained, the surface area of activated carbons produced at 400℃ and 600°C using the chemical activation process with H3PO4 was obtained as 1074 m2/g and 1069 m2/g respectively. It was understood that the obtained activated carbons had high porosity in SEM images. When the elemental analysis results were examined, it was understood that the oxidized functional groups decreased as the temperature increased. As a result, activated carbons with high porosity and high surface areas were produced from eucalyptus root woods by hydrothermal and pyrolysis methods.

References

  • Abioye, A. M., & Ani, F. N. (2015). Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renewable and Sustainable Energy Reviews, 52, 1282-1293. https://doi.org/10.1016/j.rser.2015.07.129
  • Akyildiz, H. (2007). H3PO4 aktivasyonu ile zeytin çekirdeğinden aktif karbon üretimi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri, Haziran.
  • Alslaibi, T. M., Abustan, I., Ahmad, M. A., & Foul, A. A. (2013). A review: production of activated carbon from agricultural byproducts via conventional and microwave heating. Journal of Chemical Technology & Biotechnology, 88(7), 1183-1190. https://doi.org/10.1002/jctb.4028
  • Basu P. (2010). Biomass gasification and pyrolysis: practical design and theory, Academic press, 0080961622, Boston.
  • Budinova, T., Ekinci, E., Yardim, F., Grimm, A., Björnbom, E., Minkova, V., & Goranova, M. (2006). Characterization and application of activated carbon produced by H3PO4 and water vapor activation. Fuel processing technology, 87(10), 899-905. https://doi.org/10.1016/j.fuproc.2006.06.005
  • Demiral, İ., & Şamdan, C. A. (2016). Preparation and characterisation of activated carbon from pumpkin seed shell using H3PO4. Anadolu University Journal of Science and Technology A-Applied Sciences and Engineering, 17(1), 125-138. https ://doi. org/10.18038 /btda.64281
  • Deng, J., Li, M., & Wang, Y. (2016). Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green chemistry, 18(18), 4824-4854. https://doi.org/10.1039/C6GC01172A
  • Deng, X., Zhao, B., Zhu, L., & Shao, Z. (2015). Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors. Carbon, 93, 48-58. https://doi.org/10.1016/j.carbon.2015.05.031
  • De-Yuso A.M., Rubio B., & Izquierdo M. T. (2014). Influence of activation atmosphere used in the chemical activation of almond shell on the characteristics and adsorption performance of activated carbons. Fuel Process Technol, 119:74–80. https ://doi.org/10.1016/j. fupro c.2013.10.024
  • Fuertes, A. B., & Sevilla, M. (2015). Superior Capacitive Performance of Hydrochar‐Based Porous Carbons in Aqueous Electrolytes. ChemSusChem, 8(6), 1049-1057. https://doi.org/10.1002/cssc.201403267
  • Guo, Y., & Rockstraw, D. A. (2006). Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4 activation. Carbon, 44(8), 1464-1475. https://doi.org/10.1016/j.carbon.2005.12.002
  • Gürses, M. K. (1992). Türkiye’de okaliptüsün orman ürünleri endüstrisindeki yeri ve önemi. I. Ulusal Orman Ürünleri Endüstri Kongresi, cilt:1, sayfa:189-195, Ankara.
  • Gürten, İ. I. İ. (2016). Biyokütle Temelli Aktif Karbonların Elektrokimyasal Çift Tabaka Kapasitörlerde Elektrot Malzemesi Olarak Kullanımı. Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 266 s.
  • Jain, A., Balasubramanian, R., & Srinivasan, M. P. (2016). Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chemical Engineering Journal, 283, 789-805. https://doi.org/10.1016/j.cej.2015.08.014
  • Karapınar, H. S. (2018). Yenidünya (erıobotrya japonıca) çekirdeğinden aktif karbon üretimi ve özelliklerinin incelenmesi. Doktora Tezi. Karamanoğlu Mehmetbey Üniversitesi Fen Bilimleri Enstitüsü. Karaman. 192s.
  • Köseoğlu, E. (2005). Tarımsal Yan Ürünlerden Kimyasal Aktivasyon ile Aktif Karbon Eldesi: Karakterizasyonu ve Sulu Çözeltiden Katyon Adsorpsiyonunun İncelenmesi. Yüksek Lisans Tezi, İnönü Üniversitesi, Fen Bilimleri Enstitüsü, Malatya.
  • MacDermid-Watts, K., Pradhan, R., & Dutta, A. (2021). Catalytic hydrothermal carbonization treatment of biomass for enhanced activated carbon: a review. Waste and Biomass Valorization, 12(5), 2171-2186. https://doi.org/10.1007/s12649-020-01134-x
  • McDougall, G. J. (1991). The physical nature and manufacture of activated carbon. Journal of the Southern African Institute of Mining and Metallurgy, 91(4), 109-120. https://hdl.handle.net/10520/AJA0038223X_2042
  • Nabais, J. V., Carrott, P. J. M., Carrott, M. R., & Menéndez, J. A. (2004). Preparation and modification of activated carbon fibres by microwave heating. Carbon, 42(7), 1315-1320. https://doi.org/10.1016/j.carbon.2004.01.033
  • Özçiftçi, Z. (2019). Fosforik asitle kimyasal aktive edilmiş atık çay çalısından aktif karbon üretimi . Yüksek Lisans Tezi. Recep Tayyip Erdoğan Üniversitesi. Fen Bilimleri Enstitüsü. Rize . 106s.
  • Sricharoenchaikul, V., Pechyen, C., Aht-ong, D., & Atong, D. (2008). Preparation and characterization of activated carbon from the pyrolysis of physic nut (Jatropha curcas L.) waste. Energy & Fuels, 22(1), 31-37. https://doi.org/10.1021/ef700285u
  • Stoeckli, H. F., & Kraehenbuehl, F. (1984). The External Surface of Microporous Carbons, Derived from Adsorption and Immersion Studies. Carbon, 22(3), 297-299. doi:Doi 10.1016/0008-6223(84)90174-X
  • Şamdan, A. C., (2013). Kabak Çekirdeği Kabuğundan Kimyasal Aktivasyonla Aktif Karbon Üretimi. Boya ve Ağır Metal Gideriminde Değerlendirilmesi. Yüksek Lisans Tezi. Eskişehir Osmangazi Üniversitesi. Fen Bilimleri Enstitüsü. Eskişehir. 193s.
  • Tasmakıran, A. F. (2010). Zirai Yan Ürünlerin Modifiye Edilerek Yeni Adsorbanların Hazırlanması ve Boyaların Adsorpsiyonu. e-ISSN: 2148-2683
  • Titirici, M. M., Thomas, A., Yu, S. H., Müller, J. O., & Antonietti, M. (2007). A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization. Chemistry of Materials, 19(17), 4205-4212. https://doi.org/10.1021/cm0707408
  • Tutuş, A., Kurt, R., Ertaş, M., Ayata, Ü, Alma, M. H. (2008). Eucalyptus grandis Odununun Kimyasal Bileşimi ve Termal Özellikleri. I. Ulusal Okaliptüs Sempozyumu Bildiriler Kitabı, s.307-313. Tarsus/Mersin.
  • Walker Jr, P. L. (1969). Porous carbon solids:(Edited by RL Bond) Academic Press, New York. xi+ 311 pp.
  • Wang, Y., Wei, L., Hou, Q., Mo, Z., Liu, X., & Li, W. (2023). A Review on Catalytic Depolymerization of Lignin towards High-Value Chemicals: Solvent and Catalyst. Fermentation, 9(4), 386. https://doi.org/10.3390/fermentation9040386
  • Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788. doi.org/10.1016/j.fuel.2006.12.013
  • Yang, T., & Lua, A. C. (2003). Characteristics of activated carbons prepared from pistachio-nut shells by physical activation. Journal of Colloid And İnterface Science, 267(2), 408-417. doi.org/10.1016/S0021-9797(03)00689-1
  • Zhong, Z. Y, Yang, Q., Li, X. M., Luo, K., Liu, Y., & Zeng, G. M. (2012). Preparation of peanut hullbased activated carbon by microwave-induced phosphoric acid activation and its application in Remazol Brilliant Blue R adsorption. Ind Crops Prod 37(1),178–185. https ://doi.org/10.1016/j.indcr op.2011.12.015

HİDROTERMAL ÖN İŞLEMLİ OKALİPTÜS KÖK ODUNLARINDAN PROLİZ YÖNTEMİYLE AKTİF KARBON ÜRETİLMESİ

Year 2023, , 653 - 662, 03.09.2023
https://doi.org/10.17780/ksujes.1246606

Abstract

Bu çalışmada, aktif karbon elde etmek için hammadde olarak Tarsus-Karabucak bölgesinde yetiştirilen okaliptüs ağacının (Eucalyptus grandis) kök odunları kullanılmıştır. Aktif karbonlar hidrotermal ve piroliz yöntemleri kullanılarak iki aşamada üretilmiştir. Hidrotermal yöntemde suyun süper kritik özelliğinden yararlanılarak lignoselülozik malzeme 200℃ ve 225℃’de kapalı otoklav sisteminde 24 saat tutulmuş sonrasında H3PO4 (fosforik asit) ile 1:1 oranında karıştırılarak kimyasal aktivasyon işlemi gerçekleştirilmiştir. Proliz aşamasında 400℃, 500℃, 600℃ ve 700℃ sıcaklıklarında azot ortamında 30 dakika bekletilerek karbonizasyon işlemi gerçekleştirilmiştir. Elde edilen aktif karbon numunelerinin taramalı elektron mikroskobu (SEM), Brunauer-Emmett-Teller (BET), Fourier dönüşümlü infrared (FT-IR) ve elementel analizi teknikleri kullanılarak karakterize edilmiştir. Elde edilen sonuçlara göre H3PO4 ile kimyasal aktivasyon işlemi kullanılarak 400℃ ve 600℃ sıcaklıklarda üretilen aktif karbonların yüzey alanı 1074 m2/g ve 1069 m2/g olarak elde edilmiştir. Elde edilen SEM görüntülerinde aktif karbonların yüksek poroziteye sahip olduğu anlaşılmıştır. Elementel analiz sonuçları incelendiğinde sıcaklığın arttıkça oksitlenmiş fonksiyonel grupların azaldığı anlaşılmıştır. Sonuç olarak okaliptüs kök odunlarından hidrotermal ve piroliz yöntemleri ile yüksek gözenek ve yüksek yüzey alanlarına sahip aktif karbonlar üretildi.

References

  • Abioye, A. M., & Ani, F. N. (2015). Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renewable and Sustainable Energy Reviews, 52, 1282-1293. https://doi.org/10.1016/j.rser.2015.07.129
  • Akyildiz, H. (2007). H3PO4 aktivasyonu ile zeytin çekirdeğinden aktif karbon üretimi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri, Haziran.
  • Alslaibi, T. M., Abustan, I., Ahmad, M. A., & Foul, A. A. (2013). A review: production of activated carbon from agricultural byproducts via conventional and microwave heating. Journal of Chemical Technology & Biotechnology, 88(7), 1183-1190. https://doi.org/10.1002/jctb.4028
  • Basu P. (2010). Biomass gasification and pyrolysis: practical design and theory, Academic press, 0080961622, Boston.
  • Budinova, T., Ekinci, E., Yardim, F., Grimm, A., Björnbom, E., Minkova, V., & Goranova, M. (2006). Characterization and application of activated carbon produced by H3PO4 and water vapor activation. Fuel processing technology, 87(10), 899-905. https://doi.org/10.1016/j.fuproc.2006.06.005
  • Demiral, İ., & Şamdan, C. A. (2016). Preparation and characterisation of activated carbon from pumpkin seed shell using H3PO4. Anadolu University Journal of Science and Technology A-Applied Sciences and Engineering, 17(1), 125-138. https ://doi. org/10.18038 /btda.64281
  • Deng, J., Li, M., & Wang, Y. (2016). Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green chemistry, 18(18), 4824-4854. https://doi.org/10.1039/C6GC01172A
  • Deng, X., Zhao, B., Zhu, L., & Shao, Z. (2015). Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors. Carbon, 93, 48-58. https://doi.org/10.1016/j.carbon.2015.05.031
  • De-Yuso A.M., Rubio B., & Izquierdo M. T. (2014). Influence of activation atmosphere used in the chemical activation of almond shell on the characteristics and adsorption performance of activated carbons. Fuel Process Technol, 119:74–80. https ://doi.org/10.1016/j. fupro c.2013.10.024
  • Fuertes, A. B., & Sevilla, M. (2015). Superior Capacitive Performance of Hydrochar‐Based Porous Carbons in Aqueous Electrolytes. ChemSusChem, 8(6), 1049-1057. https://doi.org/10.1002/cssc.201403267
  • Guo, Y., & Rockstraw, D. A. (2006). Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4 activation. Carbon, 44(8), 1464-1475. https://doi.org/10.1016/j.carbon.2005.12.002
  • Gürses, M. K. (1992). Türkiye’de okaliptüsün orman ürünleri endüstrisindeki yeri ve önemi. I. Ulusal Orman Ürünleri Endüstri Kongresi, cilt:1, sayfa:189-195, Ankara.
  • Gürten, İ. I. İ. (2016). Biyokütle Temelli Aktif Karbonların Elektrokimyasal Çift Tabaka Kapasitörlerde Elektrot Malzemesi Olarak Kullanımı. Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 266 s.
  • Jain, A., Balasubramanian, R., & Srinivasan, M. P. (2016). Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chemical Engineering Journal, 283, 789-805. https://doi.org/10.1016/j.cej.2015.08.014
  • Karapınar, H. S. (2018). Yenidünya (erıobotrya japonıca) çekirdeğinden aktif karbon üretimi ve özelliklerinin incelenmesi. Doktora Tezi. Karamanoğlu Mehmetbey Üniversitesi Fen Bilimleri Enstitüsü. Karaman. 192s.
  • Köseoğlu, E. (2005). Tarımsal Yan Ürünlerden Kimyasal Aktivasyon ile Aktif Karbon Eldesi: Karakterizasyonu ve Sulu Çözeltiden Katyon Adsorpsiyonunun İncelenmesi. Yüksek Lisans Tezi, İnönü Üniversitesi, Fen Bilimleri Enstitüsü, Malatya.
  • MacDermid-Watts, K., Pradhan, R., & Dutta, A. (2021). Catalytic hydrothermal carbonization treatment of biomass for enhanced activated carbon: a review. Waste and Biomass Valorization, 12(5), 2171-2186. https://doi.org/10.1007/s12649-020-01134-x
  • McDougall, G. J. (1991). The physical nature and manufacture of activated carbon. Journal of the Southern African Institute of Mining and Metallurgy, 91(4), 109-120. https://hdl.handle.net/10520/AJA0038223X_2042
  • Nabais, J. V., Carrott, P. J. M., Carrott, M. R., & Menéndez, J. A. (2004). Preparation and modification of activated carbon fibres by microwave heating. Carbon, 42(7), 1315-1320. https://doi.org/10.1016/j.carbon.2004.01.033
  • Özçiftçi, Z. (2019). Fosforik asitle kimyasal aktive edilmiş atık çay çalısından aktif karbon üretimi . Yüksek Lisans Tezi. Recep Tayyip Erdoğan Üniversitesi. Fen Bilimleri Enstitüsü. Rize . 106s.
  • Sricharoenchaikul, V., Pechyen, C., Aht-ong, D., & Atong, D. (2008). Preparation and characterization of activated carbon from the pyrolysis of physic nut (Jatropha curcas L.) waste. Energy & Fuels, 22(1), 31-37. https://doi.org/10.1021/ef700285u
  • Stoeckli, H. F., & Kraehenbuehl, F. (1984). The External Surface of Microporous Carbons, Derived from Adsorption and Immersion Studies. Carbon, 22(3), 297-299. doi:Doi 10.1016/0008-6223(84)90174-X
  • Şamdan, A. C., (2013). Kabak Çekirdeği Kabuğundan Kimyasal Aktivasyonla Aktif Karbon Üretimi. Boya ve Ağır Metal Gideriminde Değerlendirilmesi. Yüksek Lisans Tezi. Eskişehir Osmangazi Üniversitesi. Fen Bilimleri Enstitüsü. Eskişehir. 193s.
  • Tasmakıran, A. F. (2010). Zirai Yan Ürünlerin Modifiye Edilerek Yeni Adsorbanların Hazırlanması ve Boyaların Adsorpsiyonu. e-ISSN: 2148-2683
  • Titirici, M. M., Thomas, A., Yu, S. H., Müller, J. O., & Antonietti, M. (2007). A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization. Chemistry of Materials, 19(17), 4205-4212. https://doi.org/10.1021/cm0707408
  • Tutuş, A., Kurt, R., Ertaş, M., Ayata, Ü, Alma, M. H. (2008). Eucalyptus grandis Odununun Kimyasal Bileşimi ve Termal Özellikleri. I. Ulusal Okaliptüs Sempozyumu Bildiriler Kitabı, s.307-313. Tarsus/Mersin.
  • Walker Jr, P. L. (1969). Porous carbon solids:(Edited by RL Bond) Academic Press, New York. xi+ 311 pp.
  • Wang, Y., Wei, L., Hou, Q., Mo, Z., Liu, X., & Li, W. (2023). A Review on Catalytic Depolymerization of Lignin towards High-Value Chemicals: Solvent and Catalyst. Fermentation, 9(4), 386. https://doi.org/10.3390/fermentation9040386
  • Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788. doi.org/10.1016/j.fuel.2006.12.013
  • Yang, T., & Lua, A. C. (2003). Characteristics of activated carbons prepared from pistachio-nut shells by physical activation. Journal of Colloid And İnterface Science, 267(2), 408-417. doi.org/10.1016/S0021-9797(03)00689-1
  • Zhong, Z. Y, Yang, Q., Li, X. M., Luo, K., Liu, Y., & Zeng, G. M. (2012). Preparation of peanut hullbased activated carbon by microwave-induced phosphoric acid activation and its application in Remazol Brilliant Blue R adsorption. Ind Crops Prod 37(1),178–185. https ://doi.org/10.1016/j.indcr op.2011.12.015
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Material Production Technologies
Journal Section Materials Science and Engineering
Authors

Ayşegül Apaydın 0000-0001-6294-9498

Ertuğrul Altuntaş 0000-0002-1853-3206

Ali Şamil 0000-0002-4950-1725

Publication Date September 3, 2023
Submission Date February 3, 2023
Published in Issue Year 2023

Cite

APA Apaydın, A., Altuntaş, E., & Şamil, A. (2023). HİDROTERMAL ÖN İŞLEMLİ OKALİPTÜS KÖK ODUNLARINDAN PROLİZ YÖNTEMİYLE AKTİF KARBON ÜRETİLMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(3), 653-662. https://doi.org/10.17780/ksujes.1246606