Research Article
BibTex RIS Cite

BETON NUMUNE ATIKLARINDAN ELDE EDİLEN GERİ DÖNÜŞÜM AGREGALARI İLE ÜRETİLEN BETONLARDA YÜKSEK SICAKLIK ETKİLERİ

Year 2023, , 663 - 675, 03.09.2023
https://doi.org/10.17780/ksujes.1268716

Abstract

Geri dönüştürülmüş agregaların (GDA) betonda kullanılması ile doğal agrega kaynaklarının korunması, düzenli depolama talebinin azalması ve sonuç olarak sürdürülebilirlik açısından çevreye olumlu anlamda katkı sağlaması amaçlanır. Bu amaçla, GDA kullanılarak üretilen betonların yüksek sıcaklık etkilerinden sonra özelliklerinin belirlenmesi için yapılan bu çalışmada; kontrol grubu haricinde, agrega olarak hazır beton laboratuvarlarında 28 günlük dayanım testine tabi tutularak kırılmış beton atıklarından elde edilen GDA’lar kullanılmıştır. GDA’lar betona %25, %50, %75 ve %100 oranında kırmataş agregası ile yer değiştirerek ikame edilmiştir. Deneysel çalışma kapsamında, 100 mm x 200 mm boyutlarında silindir numuneler üretilmiştir. Üretilen numunelerin birim ağırlıkları belirlenmiştir. Ayrıca numunelerin oda sıcaklığında ve 100°C, 250°C, 500°C ve 750°C sıcaklıklara maruz bırakıldıktan sonraki basınç dayanımı ve kılcal geçirimlilik sonuçları tespit edilmiştir. Sonuç olarak, beton atıklarından üretilen GDA’ların kullanımı oda sıcaklığında tespit edilen beton basınç dayanımında kayda değer bir düşüşe neden olmamıştır. GDA ile üretilen numunelerin yüksek sıcaklık sonrası (250°C, 500°C ve 750°C) basınç dayanım sonuçları, kontrol numunesine kıyasla daha yüksek olduğu belirlenmiştir.

References

  • Abbu M., Al-Attar A.A., Abd Alrahman S., Al-Gburi M. (2023). The mechanical properties of lightweight (volcanic pumice) concrete containing fibers with exposure to high temperatures. J. Mech. Behav. Mater., 32. https://doi.org/10.1515/jmbm-2022-0249
  • ASTM C1585 – 13. (2013). Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes.
  • Batman, M. (2018). Beton deney numune atıklarının geri dönüşüm agregası olarak betonda kullanılabilirliğinin incelenmesi. Yüksek Lisans Tezi. Atatürk Üniversitesi Fen Bilimleri Enstitüsü İnşaat Mühendisliği Anabilim Dalı, Erzurum 78 s.
  • Behnood A. & Ziari H. (2008). Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures. Cement and Concrete Composites, 30, 106-112. https://doi.org/10.1016/j.cemconcomp.2007.06.003.
  • Brand A.S., Roesler J.R., Salas A. (2015). Initial moisture and mixing effects on higher quality recycled coarse aggregate concrete. Construction and Building Materials, 79, 83-89. https://doi.org/10.1016/j.conbuildmat.2015.01.047.
  • Bui N.K., Satomi T., Takahashi H. (2018). Effect of mineral admixtures on properties of recycled aggregate concrete at high temperature, Construction and Building Materials, 184, 361-373. https://doi.org/10.1016/j.conbuildmat.2018.06.237.
  • Demirel C. & Şimşek O. (2015). Erken Yaşdaki Atık Betonların Geri Dönüşüm Agregası Olarak Beton Üretiminde Kullanılabilirliği ve Sürdürülebilirlik Açısından İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 3, 226-235. Etxeberria M., Vázquez E., Marí A., Barra M. (2007). Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cement and Concrete Research, 37, 735-742. https://doi.org/10.1016/j.cemconres.2007.02.002.
  • Geng Y., Wang Q., Wang Y., Zhang H. (2019). Influence of service time of recycled coarse aggregate on the mechanical properties of recycled aggregate concrete. Materials and Structures, 52. https://doi.org/10.1617/s11527-019-1395-0
  • Guo H., Shi C., Guan X., Zhu J., Ding Y., Ling T-C., Zhang H., Wang Y. (2018). Durability of recycled aggregate concrete – A review. Cement and Concrete Composites, 89, 2018, 251-259. https://doi.org/10.1016/j.cemconcomp.2018.03.008.
  • Hossain K.M.A. (2006). High strength blended cement concrete incorporating volcanic ash: Performance at high temperatures. Cement and Concrete Composites, 28, 535-545. https://doi.org/10.1016/j.cemconcomp.2006.01.013.
  • Hossain K.M.A., Ahmed S., Lachemi M. (2011). Lightweight concrete incorporating pumice based blended cement and aggregate: Mechanical and durability characteristics. Construction and Building Materials, 25, 1186-1195. https://doi.org/10.1016/j.conbuildmat.2010.09.036.
  • Kahanji C., Ali F., Nadjai A., Alam N. (2018). Effect of curing temperature on the behaviour of UHPFRC at elevated temperatures. Construction and Building Materials, 182, 670-681. https://doi.org/10.1016/j.conbuildmat.2018.06.163.
  • Kou S.C., Poon C.S.,, Etxeberria M. (2014). Residue strength, water absorption and pore size distributions of recycled aggregate concrete after exposure to elevated temperatures. Cement and Concrete Composites, 53, 73-82. https://doi.org/10.1016/j.cemconcomp.2014.06.001.
  • Kou S., Poon C., Agrela F. (2011). Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures. Cement and Concrete Composites, 33, 788-795. https://doi.org/10.1016/j.cemconcomp.2011.05.009.
  • Kurda R., Brito J., Silvestre J. D. (2017). Influence of recycled aggregates and high contents of fly ash on concrete fresh properties. Cement and Concrete Composites, 84, 198-213. https://doi.org/10.1016/j.cemconcomp.2017.09.009.
  • Laneyrie C., Beaucour A-L., Green M.F., Hebert R.L., Ledesert B., Noumowe A. (2016). Influence of recycled coarse aggregates on normal and high performance concrete subjected to elevated temperatures. Construction and Building Materials, 111, 368-378. https://doi.org/10.1016/j.conbuildmat.2016.02.056.
  • Marinković S., Radonjanin V., Malešev M., Ignjatović, I. (2010). Comparative environmental assessment of natural and recycled aggregate concrete.Waste Management, 30, 2255-2264. https://doi.org/10.1016/j.wasman.2010.04.012. Maruyama I., Sasano H., Nishioka Y., Igarashi G. (2014). Strength and Young's modulus change in concrete due to long-term drying and heating up to 90°C. Cement and Concrete Research, 66, 48-63. https://doi.org/10.1016/j.cemconres.2014.07.016. Newman J.B. (1993). Properties of structural lightweight aggregate concrete. J.I. Clarke (Ed.), Structural Lightweight Aggregate Concrete, Chapman & Hall, London, 19-44.
  • Padmini A.K., Ramamurthy K., Mathews M.S. (2009). Influence of parent concrete on the properties of recycled aggregate concrete. Construction and Building Materials, 23, 829-836. https://doi.org/10.1016/j.conbuildmat.2008.03.006.
  • Poon C.S., Shui Z.H., Lam L. (2004). Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Construction and Building Materials, 18, 461-468. https://doi.org/10.1016/j.conbuildmat.2004.03.005.
  • Sancak E., Sari Y. D., Simsek O. (2008). Effects of elevated temperature on compressive strength and weight loss of the light-weight concrete with silica fume and superplasticizer. Cement and Concrete Composites. 30, 715-721. https://doi.org/10.1016/j.cemconcomp.2008.01.004.
  • TS EN 12350-2. (2019). Beton – Taze beton deneyleri- Bölüm 2: Çökme (Slump) deneyi, Türk Standartları Enstitüsü, Ankara.
  • TS EN 12390-2. (2019). Beton – sertleşmiş beton deneyleri- Bölüm 2: Dayanım deneylerinde kullanılacak deney numunelerinin hazırlanması ve küre tabi tutulması, Türk Standartları Enstitüsü, Ankara.
  • TS EN 12390-3. (2019). Beton – sertleşmiş beton deneyleri- Bölüm 3: Deney numunelerinde basınç dayanımının tayini, Türk Standartları Enstitüsü, Ankara.
  • Uysal M.& Tanyildizi H. (2012). Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network. Construction and Building Materials, 27, 404-414. https://doi.org/10.1016/j.conbuildmat.2011.07.028.
  • Verian K.P., Ashraf W., Cao Y. (2018). Properties of recycled concrete aggregate and their influence in new concrete production. Resources, Conservation and Recycling, 133, 30-49. https://doi.org/10.1016/j.resconrec.2018.02.005.
  • Vieira J.P.B., Correia J.R., Brito J. (2011). Post-fire residual mechanical properties of concrete made with recycled concrete coarse aggregates. Cement and Concrete Research, 41, 533-541. https://doi.org/10.1016/j.cemconres.2011.02.002.
  • Xiao J., Li J., Zhang Ch. (2005). Mechanical properties of recycled aggregate concrete under uniaxial loading. Cement and Concrete Research, 35, 1187-1194. https://doi.org/10.1016/j.cemconres.2004.09.020.
  • Xiao J., & Zhang C. (2007). Fire damage and residual strengths of recycled aggregate concrete. Key Eng Mat, 348–349, 937-940. https://doi.org/10.4028/www.scientific.net/KEM.348-349.937
  • Xiao J.J., Li W.G., Fan Y.H., Huang, X. (2012). An overview of study on recycled aggregate concrete in China (1996-2011). Construct. Build. Mater., 31, 364-383. https://doi.org/10.1016/j.conbuildmat.2011.12.074.
  • Xiao J., Li W., Sun Z.,. Lange D.A, Shah S.P. (2013). Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation. Cement and Concrete Composites, 37, 276-292. https://doi.org/10.1016/j.cemconcomp.2013.01.006.
  • Zega C.J., Di Maio A.A. (2009). Recycled concrete made with different natural coarse aggregates exposed to high temperature. Construction and Building Materials, 23, 2047-2052. https://doi.org/10.1016/j.conbuildmat.2008.08.017.

ELEVATED TEMPERATURE EFFECTS ON CONCRETE PRODUCED WITH RECYCLING AGGREGATE OBTAINED FROM CONCRETE SPECIMENS

Year 2023, , 663 - 675, 03.09.2023
https://doi.org/10.17780/ksujes.1268716

Abstract

With the use of recycled aggregates (GDA) in concrete, it is aimed to protect natural aggregate resources, to reduce the demand for landfills, and as a result, to contribute positively to the environment in terms of sustainability. Except for the control group, during the concrete production phase, GDAs obtained from concrete wastes, which were subjected to 28-day strength test in ready-mixed concrete laboratories, were used as aggregate. GDAs were substituted for concrete by replacing 25%, 50%, 75% and 100% crushed stone aggregate. Within the scope of the experimental study, cylindrical samples of 100 mm x 200 mm dimensions were produced. The unit weights of the produced samples were determined. In addition, the compressive strength and capillary permeability results were determined after the samples were exposed to room temperature and temperatures of 100°C, 250°C, 500°C and 750°C. As a result, the use of GDAs produced from concrete wastes did not cause a significant decrease in the concrete compressive strength determined at room temperature. It was determined that the compressive strength results of the samples produced with GDA after high temperature (250°C, 500°C and 750°C) were higher than the kontrol sample.

References

  • Abbu M., Al-Attar A.A., Abd Alrahman S., Al-Gburi M. (2023). The mechanical properties of lightweight (volcanic pumice) concrete containing fibers with exposure to high temperatures. J. Mech. Behav. Mater., 32. https://doi.org/10.1515/jmbm-2022-0249
  • ASTM C1585 – 13. (2013). Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes.
  • Batman, M. (2018). Beton deney numune atıklarının geri dönüşüm agregası olarak betonda kullanılabilirliğinin incelenmesi. Yüksek Lisans Tezi. Atatürk Üniversitesi Fen Bilimleri Enstitüsü İnşaat Mühendisliği Anabilim Dalı, Erzurum 78 s.
  • Behnood A. & Ziari H. (2008). Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures. Cement and Concrete Composites, 30, 106-112. https://doi.org/10.1016/j.cemconcomp.2007.06.003.
  • Brand A.S., Roesler J.R., Salas A. (2015). Initial moisture and mixing effects on higher quality recycled coarse aggregate concrete. Construction and Building Materials, 79, 83-89. https://doi.org/10.1016/j.conbuildmat.2015.01.047.
  • Bui N.K., Satomi T., Takahashi H. (2018). Effect of mineral admixtures on properties of recycled aggregate concrete at high temperature, Construction and Building Materials, 184, 361-373. https://doi.org/10.1016/j.conbuildmat.2018.06.237.
  • Demirel C. & Şimşek O. (2015). Erken Yaşdaki Atık Betonların Geri Dönüşüm Agregası Olarak Beton Üretiminde Kullanılabilirliği ve Sürdürülebilirlik Açısından İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 3, 226-235. Etxeberria M., Vázquez E., Marí A., Barra M. (2007). Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cement and Concrete Research, 37, 735-742. https://doi.org/10.1016/j.cemconres.2007.02.002.
  • Geng Y., Wang Q., Wang Y., Zhang H. (2019). Influence of service time of recycled coarse aggregate on the mechanical properties of recycled aggregate concrete. Materials and Structures, 52. https://doi.org/10.1617/s11527-019-1395-0
  • Guo H., Shi C., Guan X., Zhu J., Ding Y., Ling T-C., Zhang H., Wang Y. (2018). Durability of recycled aggregate concrete – A review. Cement and Concrete Composites, 89, 2018, 251-259. https://doi.org/10.1016/j.cemconcomp.2018.03.008.
  • Hossain K.M.A. (2006). High strength blended cement concrete incorporating volcanic ash: Performance at high temperatures. Cement and Concrete Composites, 28, 535-545. https://doi.org/10.1016/j.cemconcomp.2006.01.013.
  • Hossain K.M.A., Ahmed S., Lachemi M. (2011). Lightweight concrete incorporating pumice based blended cement and aggregate: Mechanical and durability characteristics. Construction and Building Materials, 25, 1186-1195. https://doi.org/10.1016/j.conbuildmat.2010.09.036.
  • Kahanji C., Ali F., Nadjai A., Alam N. (2018). Effect of curing temperature on the behaviour of UHPFRC at elevated temperatures. Construction and Building Materials, 182, 670-681. https://doi.org/10.1016/j.conbuildmat.2018.06.163.
  • Kou S.C., Poon C.S.,, Etxeberria M. (2014). Residue strength, water absorption and pore size distributions of recycled aggregate concrete after exposure to elevated temperatures. Cement and Concrete Composites, 53, 73-82. https://doi.org/10.1016/j.cemconcomp.2014.06.001.
  • Kou S., Poon C., Agrela F. (2011). Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures. Cement and Concrete Composites, 33, 788-795. https://doi.org/10.1016/j.cemconcomp.2011.05.009.
  • Kurda R., Brito J., Silvestre J. D. (2017). Influence of recycled aggregates and high contents of fly ash on concrete fresh properties. Cement and Concrete Composites, 84, 198-213. https://doi.org/10.1016/j.cemconcomp.2017.09.009.
  • Laneyrie C., Beaucour A-L., Green M.F., Hebert R.L., Ledesert B., Noumowe A. (2016). Influence of recycled coarse aggregates on normal and high performance concrete subjected to elevated temperatures. Construction and Building Materials, 111, 368-378. https://doi.org/10.1016/j.conbuildmat.2016.02.056.
  • Marinković S., Radonjanin V., Malešev M., Ignjatović, I. (2010). Comparative environmental assessment of natural and recycled aggregate concrete.Waste Management, 30, 2255-2264. https://doi.org/10.1016/j.wasman.2010.04.012. Maruyama I., Sasano H., Nishioka Y., Igarashi G. (2014). Strength and Young's modulus change in concrete due to long-term drying and heating up to 90°C. Cement and Concrete Research, 66, 48-63. https://doi.org/10.1016/j.cemconres.2014.07.016. Newman J.B. (1993). Properties of structural lightweight aggregate concrete. J.I. Clarke (Ed.), Structural Lightweight Aggregate Concrete, Chapman & Hall, London, 19-44.
  • Padmini A.K., Ramamurthy K., Mathews M.S. (2009). Influence of parent concrete on the properties of recycled aggregate concrete. Construction and Building Materials, 23, 829-836. https://doi.org/10.1016/j.conbuildmat.2008.03.006.
  • Poon C.S., Shui Z.H., Lam L. (2004). Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Construction and Building Materials, 18, 461-468. https://doi.org/10.1016/j.conbuildmat.2004.03.005.
  • Sancak E., Sari Y. D., Simsek O. (2008). Effects of elevated temperature on compressive strength and weight loss of the light-weight concrete with silica fume and superplasticizer. Cement and Concrete Composites. 30, 715-721. https://doi.org/10.1016/j.cemconcomp.2008.01.004.
  • TS EN 12350-2. (2019). Beton – Taze beton deneyleri- Bölüm 2: Çökme (Slump) deneyi, Türk Standartları Enstitüsü, Ankara.
  • TS EN 12390-2. (2019). Beton – sertleşmiş beton deneyleri- Bölüm 2: Dayanım deneylerinde kullanılacak deney numunelerinin hazırlanması ve küre tabi tutulması, Türk Standartları Enstitüsü, Ankara.
  • TS EN 12390-3. (2019). Beton – sertleşmiş beton deneyleri- Bölüm 3: Deney numunelerinde basınç dayanımının tayini, Türk Standartları Enstitüsü, Ankara.
  • Uysal M.& Tanyildizi H. (2012). Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network. Construction and Building Materials, 27, 404-414. https://doi.org/10.1016/j.conbuildmat.2011.07.028.
  • Verian K.P., Ashraf W., Cao Y. (2018). Properties of recycled concrete aggregate and their influence in new concrete production. Resources, Conservation and Recycling, 133, 30-49. https://doi.org/10.1016/j.resconrec.2018.02.005.
  • Vieira J.P.B., Correia J.R., Brito J. (2011). Post-fire residual mechanical properties of concrete made with recycled concrete coarse aggregates. Cement and Concrete Research, 41, 533-541. https://doi.org/10.1016/j.cemconres.2011.02.002.
  • Xiao J., Li J., Zhang Ch. (2005). Mechanical properties of recycled aggregate concrete under uniaxial loading. Cement and Concrete Research, 35, 1187-1194. https://doi.org/10.1016/j.cemconres.2004.09.020.
  • Xiao J., & Zhang C. (2007). Fire damage and residual strengths of recycled aggregate concrete. Key Eng Mat, 348–349, 937-940. https://doi.org/10.4028/www.scientific.net/KEM.348-349.937
  • Xiao J.J., Li W.G., Fan Y.H., Huang, X. (2012). An overview of study on recycled aggregate concrete in China (1996-2011). Construct. Build. Mater., 31, 364-383. https://doi.org/10.1016/j.conbuildmat.2011.12.074.
  • Xiao J., Li W., Sun Z.,. Lange D.A, Shah S.P. (2013). Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation. Cement and Concrete Composites, 37, 276-292. https://doi.org/10.1016/j.cemconcomp.2013.01.006.
  • Zega C.J., Di Maio A.A. (2009). Recycled concrete made with different natural coarse aggregates exposed to high temperature. Construction and Building Materials, 23, 2047-2052. https://doi.org/10.1016/j.conbuildmat.2008.08.017.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Civil Engineering
Authors

Mounzer Khır Allah 0000-0002-1744-3858

Zinnur Çelik 0000-0001-7298-7367

Ahmet Ferhat Bingöl 0000-0002-8798-8343

Publication Date September 3, 2023
Submission Date March 21, 2023
Published in Issue Year 2023

Cite

APA Khır Allah, M., Çelik, Z., & Bingöl, A. F. (2023). BETON NUMUNE ATIKLARINDAN ELDE EDİLEN GERİ DÖNÜŞÜM AGREGALARI İLE ÜRETİLEN BETONLARDA YÜKSEK SICAKLIK ETKİLERİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(3), 663-675. https://doi.org/10.17780/ksujes.1268716