Research Article
BibTex RIS Cite

Evaluation of Thiosulfate-Based Autotrophic and Mixotrophic Denitrification Performances under Different Operational Conditions

Year 2017, , 81 - 89, 27.12.2017
https://doi.org/10.17780/ksujes.335996

Abstract

The
aim of this study was to investigate the factors affecting the autotrophic and
mixotrophic denitrification performances in sequencing batch reactor (SBR).
Findings obtained from this study shed light on the full-scale applicability of
the autotrophic and mixotrophic denitrification processes in carbon deficient
wastewaters. In this study, the effect of cycle time, varying concentrations of
electron donor source and the addition of external organic carbon source was
evaluated by sulfate, nitrate, nitrite, ORP and inorganic carbon parameters.
Firstly, SBR was operated with thiosulfate (S2O32-)
based autotrophic denitrification process at different cycle times (8h-4h-2h).
Further, autotrophic denitrification process was optimized the under varying S2O32-/NO3-
ratios (1.5-1.25-1.0) at the optimum cycle time of 2h. The maximum nitrate
removal efficiency of 84% was accomplished at operational conditions containing
2h cycle time and 1.5 S2O32-/NO3-
ratio. In the rest of the study,the impact of increasing C/N ratio by methanol
supplementation (0.35-0.7-1.05)was evaluated on mixotrophic denitrification
performance. It was observed that nitrate was completely consumed at the C/N
ratio of 1.05 and nitrate removal rate improved with increasing methanol
supplementation as organic carbon source.

References

  • Beller, H.R. (2005) “Anaerobic, nitrate-dependent oxidation of U(IV) oxide minerals by the chemolitotrophic bacterium Thiobacillusdenitrificans”, Appl. Environ. Microb., 71, 2170-2174.
  • Campos, J. L.,Carvalho, S., Portela, R., Mosquera-Corral, A., &Méndez, R. (2008). Kinetics of denitrificationusingsulphurcompounds: effects of S/N ratio, endogenousandexogenouscompounds. Bioresourcetechnology, 99(5), 1293-1299.
  • Guo, Y.,Guo, L., Sun, M., Zhao, Y., Gao, M., &She, Z. (2017). Effects of hydraulicretention time (HRT) on denitrificationusingwasteactivatedsludgethermalhydrolysisliquidandacidogenicliquid as carbonsources. Bioresourcetechnology, 224, 147-156.
  • Liu, H., Jiang, W., Wan, D., Qu, J. (2009) “Study of a combined heterotrophicand sulfur autotrophic denitrification technology for removal of nitrate in water”, Journal of Haz Mat, 169, 23-28.
  • Manconi, I., Carucci, A., Lens, P. (2007) “Combined removal of sulfur compound sand nitrate by autotrophic denitrification in bioaugmented activated sludge system”, Biotechnology and Bioengineering, 98 (3), 551-560.
  • Moon, H.S., Shin, D.Y., Nam, K., Kim, J.Y. (2008) “A long-term performance test on an autotrophic denitrification column for application as a permeable reactive barrier”, Chemosphere, 73, 723-728.
  • Oh, S.E., Yoo, Y.B., Young, J.C., Kim, I.S. (2001) “Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions”, J Biotechnol, 92,1-8.
  • Sahinkaya, E.,&Kilic, A. (2014). Heterotrophicandelemental-sulfur-basedautotrophicdenitrificationprocessesforsimultaneousnitrateand Cr (VI) reduction. waterresearch, 50, 278-286.
  • Sahinkaya, E., Dursun, N., Kilic, A., Demirel, S., Uyanik, S., Cinar, O. (2011) “Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: Control of sulfate production”, Water Res., 45(20), 6661-6667.
  • Sahinkaya, E., Kilic, A., Calimlioglu, B., &Toker, Y. (2013). Simultaneous bioreduction of nitrate and chromate using sulfur-based mixotrophic denitrification process. Journal of hazardous materials, 262, 234-239.
  • Sahinkaya, E., Dursun, N. (2012) “Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: elimination of excess sulfate production and alkalinity requirement”,Chemosphere, 89(2), 144-149.
  • Sierra-Alvarez, R., Beristan-Cardoso, R., Salazar, M., Gomez, J., Razo-Flores, E., Field, J.A. (2007) “Chemolithotrophic denitrification with elemental sulfur for ground water Treatment”, Water Res, 41,1253-1262.
  • Soares, M.I.M. (2000) “Biological denitrification of ground water”, Water, Air, Soil Poll., 123, 183-193.
  • Soares, M.I.M. (2002) “Denitrification of ground water with elemental sulfur”, Water Res., 36, 1392-1395. Zhao, Y., Feng, C., Wang, Q., Yang, Y., Zhang, Z., &Sugiura, N. (2011). Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm–electrode reactor. Journal of Hazardous Materials, 192(3), 1033-1039.

Farklı İşletim Koşulları Altında Tiyosülfat Bazlı Ototrofik ve Miksotrofik Denitrifikasyon Performansının Araştırılması

Year 2017, , 81 - 89, 27.12.2017
https://doi.org/10.17780/ksujes.335996

Abstract

Bu çalışmanın amacı ototrofik ve
miksotrofik denitrifikasyon proses performanslarını etkileyen faktörlerin
ardışık kesikli reaktörde araştırılmasıdır. Çalışma verileri ototrofik
denitrifikasyon prosesinin karbon içeriği düşük atıksular için gerçek ölçekte
uygulanabilirliğine ışık tutmaktadır. Ototrofik denitrifikasyon prosesinde
farklı döngü süresi, elektron vericive organik karbon ilavesinin nitrat giderim
performansına etkisi sülfat, nitrat, nitrit, ORP ve inorganik karbon
parametreleri ile değerlendirilmiştir. Çalışmanın ilk aşamasında farklı döngü
sürelerinin (8sa-4sa-2sa) tiyosülfat (S2O3-2)
bazlı ototrofik denitrifikasyon prosesine etkisi araştırılmıştır. Daha sonra 2
saatlik optimum döngü süresinde farklı S2O3-2/NO3-oranları
(1,5-1,25-1) ile ototrofik denitrifikasyon prosesinin optimizasyon çalışmaları
yürütülmüştür. Elde edilen çalışma bulguları göz önünde bulundurulduğunda
maksimum %84 nitrat giderim verimi 2 saatlik döngü süresi ve 1,5 S2O3-2/NO3-
oranı ile işletilen işletim koşullarından elde edilmiştir. Çalışmanın son
aşamasında ise farklı C/N (0,35-0,70-1,05) oranlarının miksotrofik
denitrifikasyon performansına etkisi incelenmiştir ve C/N oranın 1,05 olduğu
işletim koşulunda nitratın tamamı tüketilirken organik madde kaynağı olarak
metanolün artmasıyla nitrat giderim hızının arttığı gözlemlenmiştir.

References

  • Beller, H.R. (2005) “Anaerobic, nitrate-dependent oxidation of U(IV) oxide minerals by the chemolitotrophic bacterium Thiobacillusdenitrificans”, Appl. Environ. Microb., 71, 2170-2174.
  • Campos, J. L.,Carvalho, S., Portela, R., Mosquera-Corral, A., &Méndez, R. (2008). Kinetics of denitrificationusingsulphurcompounds: effects of S/N ratio, endogenousandexogenouscompounds. Bioresourcetechnology, 99(5), 1293-1299.
  • Guo, Y.,Guo, L., Sun, M., Zhao, Y., Gao, M., &She, Z. (2017). Effects of hydraulicretention time (HRT) on denitrificationusingwasteactivatedsludgethermalhydrolysisliquidandacidogenicliquid as carbonsources. Bioresourcetechnology, 224, 147-156.
  • Liu, H., Jiang, W., Wan, D., Qu, J. (2009) “Study of a combined heterotrophicand sulfur autotrophic denitrification technology for removal of nitrate in water”, Journal of Haz Mat, 169, 23-28.
  • Manconi, I., Carucci, A., Lens, P. (2007) “Combined removal of sulfur compound sand nitrate by autotrophic denitrification in bioaugmented activated sludge system”, Biotechnology and Bioengineering, 98 (3), 551-560.
  • Moon, H.S., Shin, D.Y., Nam, K., Kim, J.Y. (2008) “A long-term performance test on an autotrophic denitrification column for application as a permeable reactive barrier”, Chemosphere, 73, 723-728.
  • Oh, S.E., Yoo, Y.B., Young, J.C., Kim, I.S. (2001) “Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions”, J Biotechnol, 92,1-8.
  • Sahinkaya, E.,&Kilic, A. (2014). Heterotrophicandelemental-sulfur-basedautotrophicdenitrificationprocessesforsimultaneousnitrateand Cr (VI) reduction. waterresearch, 50, 278-286.
  • Sahinkaya, E., Dursun, N., Kilic, A., Demirel, S., Uyanik, S., Cinar, O. (2011) “Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: Control of sulfate production”, Water Res., 45(20), 6661-6667.
  • Sahinkaya, E., Kilic, A., Calimlioglu, B., &Toker, Y. (2013). Simultaneous bioreduction of nitrate and chromate using sulfur-based mixotrophic denitrification process. Journal of hazardous materials, 262, 234-239.
  • Sahinkaya, E., Dursun, N. (2012) “Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: elimination of excess sulfate production and alkalinity requirement”,Chemosphere, 89(2), 144-149.
  • Sierra-Alvarez, R., Beristan-Cardoso, R., Salazar, M., Gomez, J., Razo-Flores, E., Field, J.A. (2007) “Chemolithotrophic denitrification with elemental sulfur for ground water Treatment”, Water Res, 41,1253-1262.
  • Soares, M.I.M. (2000) “Biological denitrification of ground water”, Water, Air, Soil Poll., 123, 183-193.
  • Soares, M.I.M. (2002) “Denitrification of ground water with elemental sulfur”, Water Res., 36, 1392-1395. Zhao, Y., Feng, C., Wang, Q., Yang, Y., Zhang, Z., &Sugiura, N. (2011). Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm–electrode reactor. Journal of Hazardous Materials, 192(3), 1033-1039.
There are 14 citations in total.

Details

Subjects Environmental Engineering
Journal Section Research Articles
Authors

Vildan Akgul

Dilek Akman

Yakup Cuci

Kevser Cirik

Publication Date December 27, 2017
Submission Date August 24, 2017
Published in Issue Year 2017

Cite

APA Akgul, V., Akman, D., Cuci, Y., Cirik, K. (2017). Farklı İşletim Koşulları Altında Tiyosülfat Bazlı Ototrofik ve Miksotrofik Denitrifikasyon Performansının Araştırılması. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 20(4), 81-89. https://doi.org/10.17780/ksujes.335996