Derleme
BibTex RIS Kaynak Göster

EFFECT OF WIND COMING FROM DIFFERENT DIRECTIONS ON UAV ENGINE PROPELLER: A REVIEW

Yıl 2025, Cilt: 28 Sayı: 4, 2161 - 2176, 03.12.2025
https://doi.org/10.17780/ksujes.1687992

Öz

This review study examines research focused on the performance of unmanned aerial vehicle (UAV) propellers under varying wind directions. The study provides a detailed evaluation of analyses conducted through both experimental and numerical methods. It has been determined that changes in wind direction significantly impact the flight stability and efficiency of UAVs, with crosswind conditions in particular causing asymmetric loading on the propellers, leading to reduced efficiency and increased energy consumption. The reviewed studies demonstrate that propellers with different rotational speeds and pitch angles have been analyzed practically through wind tunnel testing and digitally through advanced simulation techniques such as Computational Fluid Dynamics (CFD). The results reveal that variations in wind direction and speed lead to significant differences in critical performance parameters such as thrust, torque, and overall efficiency. Moreover, the study offers recommendations for optimizing propeller designs to better adapt to changing atmospheric conditions. These findings provide valuable guidance for achieving more stable and efficient flight performance in future UAV designs.

Kaynakça

  • Adkins, C.N. & Liebeck, R.H. (1981). Design of optimum propellers. *Journal of Propulsion and Power*, 1(3), 193-201. https://doi.org/10.2514/3.19779
  • Baker, F.R.L. & Smith, K.L. (2021). Aerodynamic performance of propellers at low Reynolds numbers. *Journal of Aircraft Engineering*, 58(3), 345-359. https://doi.org/10.1016/j.jaeng.2021.03.005
  • Becker, S., Lauenroth, A., & Rohardt, C.H. (2022). Propeller performance testing in the Cryogenic Wind Tunnel Cologne (DNW-KKK). *AIAA Aviation Forum*, Chicago, USA. https://doi.org/10.2514/6.2022-3456
  • Biermann, D. & Gray, W.H. (1941). Wind-tunnel tests of eight-blade single and dual-rotating pusher propellers in the tractor position. *NACA Advanced Research Report*, ARR-1005.
  • Bogdanski, J., Smith, R. & Johnson, M. (2015). The influence of blade pitch and rotational speed on propeller performance in aviation. *Journal of Aerospace Engineering*, 29(4), 567-580. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000543
  • Brandt, J.B. & Selig, M.S. (2011). Propeller performance data at low Reynolds numbers. *Journal of Aircraft*, 48(2), 700-709. https://doi.org/10.2514/1.C031114
  • Cai, J. & Gunasekaran, S. (2023). Frequency response of RC propellers to streamwise gusts in forward flight. *Wind*, 3(2), 253-272. https://doi.org/10.3390/wind3020015
  • Carroll, J. & Marcum, D. (2013). Comparison of a blade element momentum model to 3D CFD simulations for small scale propellers. *SAE International Journal of Aerospace*, 6(2), 721-728. https://doi.org/10.4271/2013-01-2185
  • Cerny, M. & Breitsamter, C. (2020). A comparison of isolated and ducted fixed-pitch propellers under non-axial inflow conditions. *Aerospace*, 7(8), 112. https://doi.org/10.3390/aerospace7080112
  • Chae, T., Kim, Y. & Park, D. (2018). Effects of blade design parameters on propeller performance. *Korean Journal of Aerospace*, 46(3), 189-196. https://doi.org/10.5139/JKSAS.2018.46.3.189
  • Chen, Y., Liu, P., Tang, Z. & Guo, H. (2015). Wind tunnel tests of stratospheric airship counter rotating propellers. *Theoretical and Applied Mechanics Letters*, 5(1), 58-61. https://doi.org/10.1016/j.taml.2015.01.001
  • Ciliberti, D. & Nicolosi, F. (2022). Design, analysis, and testing of a scaled propeller for an innovative regional turboprop aircraft. *Aerospace*, 9(5), 264. https://doi.org/10.3390/aerospace9050264
  • Czyż, Z., Karpinski, P. & Skiba, K. (2021). Wind tunnel investigation of the propellers for unmanned aerial vehicle. *2021 IEEE International Workshop on Metrology for Aerospace*, 672-676. https://doi.org/10.1109/MetroAeroSpace51421.2021.9511724
  • Czyż, Z., Karpinski, P. & Skiba, K. (2022). Wind tunnel performance tests of the propellers with different pitch for the electric propulsion system. *Sensors*, 22(1), 2. https://doi.org/10.3390/s22010002
  • Czyż, Z., Karpinski, P. & Stryczniewicz, W. (2020). Measurement of the flow field generated by multicopter propellers. *Sensors*, 20(19), 5537. https://doi.org/10.3390/s20195537
  • Deters, R.W., Ananda, G.K. & Selig, M.S. (2014). Reynolds number effects on the performance of small-scale propellers. *Journal of Aircraft*, 51(4), 1234-1245. https://doi.org/10.2514/1.C032267
  • Fischer, A. & Müller, B. (2021). *Advanced Aerodynamics and UAV Performance Optimization*. Aviation Publishers.
  • Giguere, P., Lemay, J. & Dumas, G. (1995). Gurney flap effects and scaling for low-speed airfoils. *13th Applied Aerodynamics Conference*, 1881. https://doi.org/10.2514/6.1995-1881
  • Go, Y.J., Kim, D.H., Lee, J.W. & Lee, D.H. (2022). A study on the scale effect according to the Reynolds number in propeller flow analysis and a model experiment. *Aerospace*, 9(10), 559. https://doi.org/10.3390/aerospace9100559
  • Gur, O. & Rosen, A. (2009). Flight performance and propulsion systems: Advanced topics. *Aviation Research Journal*, 34(2), 123-136. https://doi.org/10.1016/j.avr.2009.01.002
  • Hassinalian, M. & Abdelkefi, A. (2017). Classification, applications, and design of drones: A review. *Progress in Aerospace Sciences*, 91, 99-131. https://doi.org/10.1016/j.paerosci.2017.04.003
  • Kutty, H.A., Rajendran, P. & Mule, A. (2017). Performance analysis of small scale UAV propeller with slotted design. *2017 International Conference on Innovations in Information, Embedded and Communication Systems*, 695-700. https://doi.org/10.1109/I2CT.2017.8226219
  • Liu, X., Zhao, D. & Oo, N.L. (2023). Comparison studies on aerodynamic performances of a rotating propeller for small-size UAVs. *Aerospace Science and Technology*, 133, 108148. https://doi.org/10.1016/j.ast.2023.108148
  • Moreira, C., Herzog, N. & Breitsamter, C. (2024). Wind tunnel investigation of transient propeller loads for non-axial inflow conditions. *Aerospace*, 11(4), 274. https://doi.org/10.3390/aerospace11040274
  • Murakami, M., Saito, Y. & Aono, H. (2022). Effects of gusty flow on aerodynamic performance of multirotor drone propellers in hovering flight. *Journal of Fluid Science and Technology*, 17(4), JFST0013. https://doi.org/10.1299/jfst.2022jfst0013
  • Pobikrowska, K. & Goetzendorf-Grabowski, T. (2021). Wind tunnel tests of hovering propellers in the transition state of Quad-Plane. *Bulletin of the Polish Academy of Sciences: Technical Sciences*, 69(6), e138821. https://doi.org/10.24425/bpasts.2021.138821
  • Podsedkowski, M., Lipian, M. & Obidowski, D. (2023). Variable pitch propeller - blade pitch moment computational analysis. *2023 International Conference on Unmanned Aircraft Systems*, 118-122. https://doi.org/10.1109/ICUAS57906.2023.10155835
  • Quach, H.V., Nguyen, T.T. & Kim, S.J. (2024). Analysis and evaluation of aerodynamic characteristics of super-heavy drone. *Transportation Research Procedia*, 80, 186-194. https://doi.org/10.1016/j.trpro.2024.09.024
  • Raffel, M., Willert, C.E., Wereley, S.T. & Kompenhans, J. (2006). Micro-PIV and ELDV wind tunnel investigations of the laminar separation bubble above a helicopter blade tip. *Measurement Science and Technology*, 17, 1652-1658. https://doi.org/10.1088/0957-0233/17/7/006
  • Romeo, G., Borello, F., Correa, G. & Cestino, E. (2012). Design and testing of a propeller for a two-seater aircraft powered by fuel cells. *Journal of Aerospace Engineering*, 226(8), 804-816. https://doi.org/10.1177/0954410011417440
  • Simmons, B.M. & Hatke, D.B. (2021). Investigation of high incidence angle propeller aerodynamics for subscale eVTOL aircraft. *NASA Technical Memorandum*, 20210014010.
  • Smith, J. & Johnson, R. (2018). Kriyojenik rüzgâr tünellerinde yüksek Reynolds sayılarına ulaşma yöntemleri. *Journal of Aerospace Engineering*, 45(3), 123-135. https://doi.org/10.1016/j.jaes.2018.05.010
  • Theys, B., Dimitriadis, G., Andrianne, T. & De Schutter, J. (2014). Wind tunnel testing of tilted MAV propeller. *2014 International Conference on Unmanned Aircraft Systems*, 1064-1072. https://doi.org/10.1109/ICUAS.2014.6842357
  • Theys, B., Dimitriadis, G., Andrianne, T. & De Schutter, J. (2016). Influence of propeller configuration on propulsion system efficiency of multi-rotor UAVs. *2016 International Conference on Unmanned Aircraft Systems*, 195-201. https://doi.org/10.1109/ICUAS.2016.7502664
  • Vogeltanz, T. (2016). Performance analysis of mini-propellers based on FlightGear. *AIP Conference Proceedings*, 1738, 480086. https://doi.org/10.1063/1.4951902
  • Xiang, S., Liu, Z., Zhang, Y. & Li, J. (2018). An improved propeller design method for the electric aircraft. *Aerospace Science and Technology*, 78, 488-493. https://doi.org/10.1016/j.ast.2018.05.008
  • Yao, Y., Zhang, Y., Chen, H. & Li, Q. (2022). Aerodynamic optimization and analysis of low Reynolds number propeller with Gurney flap for ultra-high-altitude unmanned aerial vehicle. *Applied Sciences*, 12(6), 3195. https://doi.org/10.3390/app12063195

FARKLI YÖNDEN GELEN RÜZGÂRIN İHA MOTOR PERVANESİ ÜZERİNDEKİ ETKİSİ: BİR DERLEME

Yıl 2025, Cilt: 28 Sayı: 4, 2161 - 2176, 03.12.2025
https://doi.org/10.17780/ksujes.1687992

Öz

Bu derleme çalışması, insansız hava araçları (İHA) pervanelerinin farklı rüzgâr yönleri altında gösterdiği performansı inceleyen araştırmaları kapsamaktadır. Çalışmada, deneysel ve sayısal yöntemlerle yapılan analizler detaylı bir şekilde değerlendirilmiştir. Rüzgâr yönündeki değişimlerin İHA’ların uçuş stabilitesi ve verimliliği üzerinde belirgin etkiler yarattığı, özellikle çapraz rüzgâr koşullarında pervanelerde asimetrik yüklenmelere bağlı olarak verim düşüşü ve enerji tüketiminde artış gözlemlendiği belirlenmiştir. İncelenen çalışmalar, farklı devir hızları ve hatve açılarına sahip pervanelerin rüzgâr tüneli testleriyle pratikte, CFD gibi simülasyon teknikleriyle dijital ortamda analiz edildiğini göstermektedir. Sonuçlar, rüzgâr yönü ve hızındaki değişimlerin itiş, tork ve genel verimlilik gibi kritik performans parametrelerinde önemli farklılıklara yol açtığını ortaya koymuştur. Çalışma ayrıca, değişken hava koşullarına uyum sağlayacak şekilde pervane tasarımında yapılabilecek optimizasyonlara dair öneriler sunmaktadır. Bu bulgular, gelecekteki İHA tasarımlarında daha stabil ve verimli uçuş performansı sağlanması açısından önemli bir rehber niteliğindedir.

Kaynakça

  • Adkins, C.N. & Liebeck, R.H. (1981). Design of optimum propellers. *Journal of Propulsion and Power*, 1(3), 193-201. https://doi.org/10.2514/3.19779
  • Baker, F.R.L. & Smith, K.L. (2021). Aerodynamic performance of propellers at low Reynolds numbers. *Journal of Aircraft Engineering*, 58(3), 345-359. https://doi.org/10.1016/j.jaeng.2021.03.005
  • Becker, S., Lauenroth, A., & Rohardt, C.H. (2022). Propeller performance testing in the Cryogenic Wind Tunnel Cologne (DNW-KKK). *AIAA Aviation Forum*, Chicago, USA. https://doi.org/10.2514/6.2022-3456
  • Biermann, D. & Gray, W.H. (1941). Wind-tunnel tests of eight-blade single and dual-rotating pusher propellers in the tractor position. *NACA Advanced Research Report*, ARR-1005.
  • Bogdanski, J., Smith, R. & Johnson, M. (2015). The influence of blade pitch and rotational speed on propeller performance in aviation. *Journal of Aerospace Engineering*, 29(4), 567-580. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000543
  • Brandt, J.B. & Selig, M.S. (2011). Propeller performance data at low Reynolds numbers. *Journal of Aircraft*, 48(2), 700-709. https://doi.org/10.2514/1.C031114
  • Cai, J. & Gunasekaran, S. (2023). Frequency response of RC propellers to streamwise gusts in forward flight. *Wind*, 3(2), 253-272. https://doi.org/10.3390/wind3020015
  • Carroll, J. & Marcum, D. (2013). Comparison of a blade element momentum model to 3D CFD simulations for small scale propellers. *SAE International Journal of Aerospace*, 6(2), 721-728. https://doi.org/10.4271/2013-01-2185
  • Cerny, M. & Breitsamter, C. (2020). A comparison of isolated and ducted fixed-pitch propellers under non-axial inflow conditions. *Aerospace*, 7(8), 112. https://doi.org/10.3390/aerospace7080112
  • Chae, T., Kim, Y. & Park, D. (2018). Effects of blade design parameters on propeller performance. *Korean Journal of Aerospace*, 46(3), 189-196. https://doi.org/10.5139/JKSAS.2018.46.3.189
  • Chen, Y., Liu, P., Tang, Z. & Guo, H. (2015). Wind tunnel tests of stratospheric airship counter rotating propellers. *Theoretical and Applied Mechanics Letters*, 5(1), 58-61. https://doi.org/10.1016/j.taml.2015.01.001
  • Ciliberti, D. & Nicolosi, F. (2022). Design, analysis, and testing of a scaled propeller for an innovative regional turboprop aircraft. *Aerospace*, 9(5), 264. https://doi.org/10.3390/aerospace9050264
  • Czyż, Z., Karpinski, P. & Skiba, K. (2021). Wind tunnel investigation of the propellers for unmanned aerial vehicle. *2021 IEEE International Workshop on Metrology for Aerospace*, 672-676. https://doi.org/10.1109/MetroAeroSpace51421.2021.9511724
  • Czyż, Z., Karpinski, P. & Skiba, K. (2022). Wind tunnel performance tests of the propellers with different pitch for the electric propulsion system. *Sensors*, 22(1), 2. https://doi.org/10.3390/s22010002
  • Czyż, Z., Karpinski, P. & Stryczniewicz, W. (2020). Measurement of the flow field generated by multicopter propellers. *Sensors*, 20(19), 5537. https://doi.org/10.3390/s20195537
  • Deters, R.W., Ananda, G.K. & Selig, M.S. (2014). Reynolds number effects on the performance of small-scale propellers. *Journal of Aircraft*, 51(4), 1234-1245. https://doi.org/10.2514/1.C032267
  • Fischer, A. & Müller, B. (2021). *Advanced Aerodynamics and UAV Performance Optimization*. Aviation Publishers.
  • Giguere, P., Lemay, J. & Dumas, G. (1995). Gurney flap effects and scaling for low-speed airfoils. *13th Applied Aerodynamics Conference*, 1881. https://doi.org/10.2514/6.1995-1881
  • Go, Y.J., Kim, D.H., Lee, J.W. & Lee, D.H. (2022). A study on the scale effect according to the Reynolds number in propeller flow analysis and a model experiment. *Aerospace*, 9(10), 559. https://doi.org/10.3390/aerospace9100559
  • Gur, O. & Rosen, A. (2009). Flight performance and propulsion systems: Advanced topics. *Aviation Research Journal*, 34(2), 123-136. https://doi.org/10.1016/j.avr.2009.01.002
  • Hassinalian, M. & Abdelkefi, A. (2017). Classification, applications, and design of drones: A review. *Progress in Aerospace Sciences*, 91, 99-131. https://doi.org/10.1016/j.paerosci.2017.04.003
  • Kutty, H.A., Rajendran, P. & Mule, A. (2017). Performance analysis of small scale UAV propeller with slotted design. *2017 International Conference on Innovations in Information, Embedded and Communication Systems*, 695-700. https://doi.org/10.1109/I2CT.2017.8226219
  • Liu, X., Zhao, D. & Oo, N.L. (2023). Comparison studies on aerodynamic performances of a rotating propeller for small-size UAVs. *Aerospace Science and Technology*, 133, 108148. https://doi.org/10.1016/j.ast.2023.108148
  • Moreira, C., Herzog, N. & Breitsamter, C. (2024). Wind tunnel investigation of transient propeller loads for non-axial inflow conditions. *Aerospace*, 11(4), 274. https://doi.org/10.3390/aerospace11040274
  • Murakami, M., Saito, Y. & Aono, H. (2022). Effects of gusty flow on aerodynamic performance of multirotor drone propellers in hovering flight. *Journal of Fluid Science and Technology*, 17(4), JFST0013. https://doi.org/10.1299/jfst.2022jfst0013
  • Pobikrowska, K. & Goetzendorf-Grabowski, T. (2021). Wind tunnel tests of hovering propellers in the transition state of Quad-Plane. *Bulletin of the Polish Academy of Sciences: Technical Sciences*, 69(6), e138821. https://doi.org/10.24425/bpasts.2021.138821
  • Podsedkowski, M., Lipian, M. & Obidowski, D. (2023). Variable pitch propeller - blade pitch moment computational analysis. *2023 International Conference on Unmanned Aircraft Systems*, 118-122. https://doi.org/10.1109/ICUAS57906.2023.10155835
  • Quach, H.V., Nguyen, T.T. & Kim, S.J. (2024). Analysis and evaluation of aerodynamic characteristics of super-heavy drone. *Transportation Research Procedia*, 80, 186-194. https://doi.org/10.1016/j.trpro.2024.09.024
  • Raffel, M., Willert, C.E., Wereley, S.T. & Kompenhans, J. (2006). Micro-PIV and ELDV wind tunnel investigations of the laminar separation bubble above a helicopter blade tip. *Measurement Science and Technology*, 17, 1652-1658. https://doi.org/10.1088/0957-0233/17/7/006
  • Romeo, G., Borello, F., Correa, G. & Cestino, E. (2012). Design and testing of a propeller for a two-seater aircraft powered by fuel cells. *Journal of Aerospace Engineering*, 226(8), 804-816. https://doi.org/10.1177/0954410011417440
  • Simmons, B.M. & Hatke, D.B. (2021). Investigation of high incidence angle propeller aerodynamics for subscale eVTOL aircraft. *NASA Technical Memorandum*, 20210014010.
  • Smith, J. & Johnson, R. (2018). Kriyojenik rüzgâr tünellerinde yüksek Reynolds sayılarına ulaşma yöntemleri. *Journal of Aerospace Engineering*, 45(3), 123-135. https://doi.org/10.1016/j.jaes.2018.05.010
  • Theys, B., Dimitriadis, G., Andrianne, T. & De Schutter, J. (2014). Wind tunnel testing of tilted MAV propeller. *2014 International Conference on Unmanned Aircraft Systems*, 1064-1072. https://doi.org/10.1109/ICUAS.2014.6842357
  • Theys, B., Dimitriadis, G., Andrianne, T. & De Schutter, J. (2016). Influence of propeller configuration on propulsion system efficiency of multi-rotor UAVs. *2016 International Conference on Unmanned Aircraft Systems*, 195-201. https://doi.org/10.1109/ICUAS.2016.7502664
  • Vogeltanz, T. (2016). Performance analysis of mini-propellers based on FlightGear. *AIP Conference Proceedings*, 1738, 480086. https://doi.org/10.1063/1.4951902
  • Xiang, S., Liu, Z., Zhang, Y. & Li, J. (2018). An improved propeller design method for the electric aircraft. *Aerospace Science and Technology*, 78, 488-493. https://doi.org/10.1016/j.ast.2018.05.008
  • Yao, Y., Zhang, Y., Chen, H. & Li, Q. (2022). Aerodynamic optimization and analysis of low Reynolds number propeller with Gurney flap for ultra-high-altitude unmanned aerial vehicle. *Applied Sciences*, 12(6), 3195. https://doi.org/10.3390/app12063195
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Derleme
Yazarlar

Şükrü Eldek 0009-0003-5781-1509

Selim Tangöz 0000-0002-8284-1326

Gönderilme Tarihi 30 Nisan 2025
Kabul Tarihi 5 Kasım 2025
Yayımlanma Tarihi 3 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 28 Sayı: 4

Kaynak Göster

APA Eldek, Ş., & Tangöz, S. (2025). FARKLI YÖNDEN GELEN RÜZGÂRIN İHA MOTOR PERVANESİ ÜZERİNDEKİ ETKİSİ: BİR DERLEME. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(4), 2161-2176. https://doi.org/10.17780/ksujes.1687992