Aerodynamics and Flow Characteristics of X-45 Delta Wing Planform
Yıl 2016,
Cilt: 19 Sayı: 1, 1 - 10, 10.05.2016
Bülent Yanıktepe
,
Coşkun Özalp
,
Çetin Canpolat
Öz
The present experimental work investigates the near surface flow structure and aerodynamic characteristics of X-45 type non-slender delta wing planform using dye visualization, Stereoscopic Particle Image Velocimetry (stereo-PIV) and aerodynamic load measurements. The instantaneous images are acquired on the plan-view plane within 5o ≤ a ≤ 20o to calculate the time-averaged flow data. In order to compare flow structures with other non-slender wing planforms such as delta and lambda, previously presented dye visualization and stereo-PIV results are also provided. It can be concluded that vortical flow with a pair of well-defined LEVs over X-45 develop at very low angles of attack, and form close to the wing surface similar to delta and lambda planforms. The stall occurs at an angle of attack a = 32o, whereas stalling is evident at relatively lower angles of attack for simple delta wing.
Kaynakça
- [1]. Gursul I., Gordinier R., and Visbal M. (2005). “Unsteady Aerodynamics of Nonslender Delta Wings” Progress in Aerospace Sciences Vol.41, pp.515-557.
- [2]. Canpolat C., Yayla S., Sahin B., Akilli, H (2012). “Observation of the Vortical Flow over a Yawed Delta Wing”, Journal of Aerospace Engineering, Vol.25, pp. 613-626.
- [3]. Yaniktepe, B., and Rockwell, D. (2004). “Flow Structure on a Delta Wing of Low Sweep Angle” AIAA Journal, Vol. 42, No. 3.
- [4]. Canpolat C., Yayla, S., Sahin, B., and Akilli, H. (2009). “Dye Visualization of the Flow Structure over a Yawed Nonslender Delta Wing”, Journal of Aircraft ,Vol. 46, No. 5.
- [5]. Sahin B, Yayla S, Canpolat C, and Akilli H. (2012) "Flow structure over the yawed nonslender diamond wing", Aerospace Science and Technology, vol. 23, no. 1, pp. 108-119.
- [6]. Cui, Y. D. , Lim T. T., Tsai H. M., (2007) “Control of Vortex Breakdown over a Delta Wing Using Forebody Slot Blowing”, AIAA Journal, Vol. 45, No. 1., pp. 110-117.
- [7]. Menke, M., Yang, H., and Gursul, I., (1999). “Experiments on the Unsteady Nature of Vortex Breakdown over Delta Wings”, Experiments in Fluids, Vol. 27, pp. 262-272.
- [8]. Yavuz, M., Elkhoury, M., and Rockwell, D. (2004). “Near-Surface Topology and Flow Structure on a Delta Wing”, AIAA Journal, Vol. 42, No. 2, pp. 332-340.
- [9]. Yaniktepe B, Ozalp C, Sahin B and Cag S, (2015a) “Experimental investigation of Surface Flow Structure over Non-Slender Diamond Wing”, 7th International Exergy, Energy and Environment Symposium, April 27-30, Valenciennes, France.
- [10]. Yaniktepe B, Ozalp C, Sahin B and Cag S, (2015b) “Investigation Of Aerodynamic Characteristics and Flow Visualization Under Pitching Motion Over Non-Slender Delta Wıng” Internatıonal Congress On Engıneerıng And Natural Scıences May 15-19, Skopje, Makedonya.
- [11]. Yaniktepe, B., and Rockwell, D. ( 2005). “Flow Structure on Diamond and Lambda Planforms:Trailing-Edge Region” AIAA Journal, Vol. 43, No. 7.
- [12]. Elkhoury, M., Yavuz, M. M. and Rockwell, D., (2005). Near-Surface Topology of a Unmanned Combat Air Vehicles Planform: Reynolds Number Dependence. Journal of Aircraft, Vol. 42, No. 5, pp. 1318-1330.
- [13]. Shim H.J., Park S.O. (2013). “ Low-speed windtunnel test results of a BWB-UCAV model”, Procedia Engineering, Vol.67, , pp.50-58.
- [14]. McParlin, S, C., Bruce, R, J., Hepworth, A, G., Rae, A, J., (2006). “Low speed wind tunnel tests on the 1303 UCAV concept,” 24th Applied Aerodynamics Conference, San Francisco, United States of America, AIAA 2006-2985.
- [15]. Petterson, K., (2006). “Low speed aerodynamic and Flowfield characteristics of a UCAV,” 24th Applied Aerodynamics Conference, San Francisco, United States of America, AIAA 2006-2986.
- [16]. Woods M. I., Wood N. J. (2000). “Aerodynamic Characteristics of Lambda Wings”, The Aeronautical Journal, Vol. 104, No.1034, pp. 165-174.
- [17]. Pevitt C., Alam F. (2014). “ Static Computational Fluid Dynamics Simulations Around a Specialised Delta Wing”, Computer and Fluids, Vol.100, pp. 155-164.
- [18]. Prasad A. K. (2000). “Stereoscopic particle image velocimetry” Experimets in Fluids, Vol.29, No.2, pp.103-116.
- [19]. Arroyo M.P., Greated C.A. (1991). “Stereoscopic Particle Image Velocimetry “ Measurement Science & Technology, Vol.2, No.12, pp.1181-1186.
- [20]. Westerweel J. (1993). “Digital Particle Image Velocimetry, Theory and Application”, Delft University Press,.
- [21]. Adrian R. J. (2005). “Twenty Years of Particle Image Velocimetry”, Experimental Fluids, Vol.39, pp.159–16.
- [22]. Raffel M., Willert, C.E., Wereley, S.T., Kompenhans, J. (2007). “Particle Image Velocimetry: A Practical Guide” 2nd ed., Springer.
- [23]. Ozgoren, M., Sahin, B., and Rockwell, D. (2002). “Vortex Structure on a Delta Wing at High Angle-of-Attack", AIAA Journal, Vol.40, No.2, pp.285-292.
- [24]. Akilli, H., Sahin, B., and Rockwell, D. (2001). “Control of Vortex Breakdown by a Transversely-Oriented Wire”, Physics of Fluids, Vol. 13, No. 2, pp. 452-463.
- [25]. Yayla S., Canpolat C., Sahin B., Akilli H., (2013). “The effect of angle of attack on the flow structure over the nonslender lambda wing”, Aerospace Science and Technology 28, 417–430.
- [26]. Anderson J.D. Fundamentals of aerodynamics. McGraw-Hill Higher Education, ISBN 0-07-118146-6, 2001.
X-45 Tipi Delta Kanat Modeli Üzerinde Oluşan Akış Karakteristikleri ve Aerodinamiği
Yıl 2016,
Cilt: 19 Sayı: 1, 1 - 10, 10.05.2016
Bülent Yanıktepe
,
Coşkun Özalp
,
Çetin Canpolat
Öz
Mevcut deneysel çalışma ile X-45 tipi delta kanat modeli üzerinde oluşan yakın yüzey akış yapısı ve aerodinamik karakteristikleri, boya görüntüleme, üç boyutlu Stereoskopik Parçacık Görüntüleme Tekniği (stereo PIV) ve aerodinamik kuvvet ölçümleri kullanılarak araştırılmıştır. Anlık görüntüler ile üst görünüş düzleminde zaman ortalama akış verileri 5o ≤ α ≤ 20ohücum açılarında elde edilmiştir. Delta ve Lamda tipi diğer düşük süpürme açılarına sahip delta kanat modelleri ile akış yapılarını karşılaştırmak için önceki sunulan boya görüntüleri ve steroPIV sonuçları kullanılmıştır. Düşük hücum açılarında X-45 tipi delta kanat modeli üzerinde iyi tanımlanmış ön uç yanal girdaplar delta ve lamda modellerine benzer kanat yüzeyinde oluşmaktadır. X-45 tipi delta kanat modelinde ölü akış yapısı α = 32ode oluşmaktayken basit delta kanat ve lamda modellerinde daha düşük hücum açılarında meydana gelmektedir
Kaynakça
- [1]. Gursul I., Gordinier R., and Visbal M. (2005). “Unsteady Aerodynamics of Nonslender Delta Wings” Progress in Aerospace Sciences Vol.41, pp.515-557.
- [2]. Canpolat C., Yayla S., Sahin B., Akilli, H (2012). “Observation of the Vortical Flow over a Yawed Delta Wing”, Journal of Aerospace Engineering, Vol.25, pp. 613-626.
- [3]. Yaniktepe, B., and Rockwell, D. (2004). “Flow Structure on a Delta Wing of Low Sweep Angle” AIAA Journal, Vol. 42, No. 3.
- [4]. Canpolat C., Yayla, S., Sahin, B., and Akilli, H. (2009). “Dye Visualization of the Flow Structure over a Yawed Nonslender Delta Wing”, Journal of Aircraft ,Vol. 46, No. 5.
- [5]. Sahin B, Yayla S, Canpolat C, and Akilli H. (2012) "Flow structure over the yawed nonslender diamond wing", Aerospace Science and Technology, vol. 23, no. 1, pp. 108-119.
- [6]. Cui, Y. D. , Lim T. T., Tsai H. M., (2007) “Control of Vortex Breakdown over a Delta Wing Using Forebody Slot Blowing”, AIAA Journal, Vol. 45, No. 1., pp. 110-117.
- [7]. Menke, M., Yang, H., and Gursul, I., (1999). “Experiments on the Unsteady Nature of Vortex Breakdown over Delta Wings”, Experiments in Fluids, Vol. 27, pp. 262-272.
- [8]. Yavuz, M., Elkhoury, M., and Rockwell, D. (2004). “Near-Surface Topology and Flow Structure on a Delta Wing”, AIAA Journal, Vol. 42, No. 2, pp. 332-340.
- [9]. Yaniktepe B, Ozalp C, Sahin B and Cag S, (2015a) “Experimental investigation of Surface Flow Structure over Non-Slender Diamond Wing”, 7th International Exergy, Energy and Environment Symposium, April 27-30, Valenciennes, France.
- [10]. Yaniktepe B, Ozalp C, Sahin B and Cag S, (2015b) “Investigation Of Aerodynamic Characteristics and Flow Visualization Under Pitching Motion Over Non-Slender Delta Wıng” Internatıonal Congress On Engıneerıng And Natural Scıences May 15-19, Skopje, Makedonya.
- [11]. Yaniktepe, B., and Rockwell, D. ( 2005). “Flow Structure on Diamond and Lambda Planforms:Trailing-Edge Region” AIAA Journal, Vol. 43, No. 7.
- [12]. Elkhoury, M., Yavuz, M. M. and Rockwell, D., (2005). Near-Surface Topology of a Unmanned Combat Air Vehicles Planform: Reynolds Number Dependence. Journal of Aircraft, Vol. 42, No. 5, pp. 1318-1330.
- [13]. Shim H.J., Park S.O. (2013). “ Low-speed windtunnel test results of a BWB-UCAV model”, Procedia Engineering, Vol.67, , pp.50-58.
- [14]. McParlin, S, C., Bruce, R, J., Hepworth, A, G., Rae, A, J., (2006). “Low speed wind tunnel tests on the 1303 UCAV concept,” 24th Applied Aerodynamics Conference, San Francisco, United States of America, AIAA 2006-2985.
- [15]. Petterson, K., (2006). “Low speed aerodynamic and Flowfield characteristics of a UCAV,” 24th Applied Aerodynamics Conference, San Francisco, United States of America, AIAA 2006-2986.
- [16]. Woods M. I., Wood N. J. (2000). “Aerodynamic Characteristics of Lambda Wings”, The Aeronautical Journal, Vol. 104, No.1034, pp. 165-174.
- [17]. Pevitt C., Alam F. (2014). “ Static Computational Fluid Dynamics Simulations Around a Specialised Delta Wing”, Computer and Fluids, Vol.100, pp. 155-164.
- [18]. Prasad A. K. (2000). “Stereoscopic particle image velocimetry” Experimets in Fluids, Vol.29, No.2, pp.103-116.
- [19]. Arroyo M.P., Greated C.A. (1991). “Stereoscopic Particle Image Velocimetry “ Measurement Science & Technology, Vol.2, No.12, pp.1181-1186.
- [20]. Westerweel J. (1993). “Digital Particle Image Velocimetry, Theory and Application”, Delft University Press,.
- [21]. Adrian R. J. (2005). “Twenty Years of Particle Image Velocimetry”, Experimental Fluids, Vol.39, pp.159–16.
- [22]. Raffel M., Willert, C.E., Wereley, S.T., Kompenhans, J. (2007). “Particle Image Velocimetry: A Practical Guide” 2nd ed., Springer.
- [23]. Ozgoren, M., Sahin, B., and Rockwell, D. (2002). “Vortex Structure on a Delta Wing at High Angle-of-Attack", AIAA Journal, Vol.40, No.2, pp.285-292.
- [24]. Akilli, H., Sahin, B., and Rockwell, D. (2001). “Control of Vortex Breakdown by a Transversely-Oriented Wire”, Physics of Fluids, Vol. 13, No. 2, pp. 452-463.
- [25]. Yayla S., Canpolat C., Sahin B., Akilli H., (2013). “The effect of angle of attack on the flow structure over the nonslender lambda wing”, Aerospace Science and Technology 28, 417–430.
- [26]. Anderson J.D. Fundamentals of aerodynamics. McGraw-Hill Higher Education, ISBN 0-07-118146-6, 2001.