Araştırma Makalesi
BibTex RIS Kaynak Göster

ENDÜSTRİYEL ALANLARDA İÇ ORTAM HAVA KİRLETİCİLERİNDEN PARTİKÜL MADDENİN ELEKTRON MİKROSKOBU İLE KAYNAK ANALİZİ: TEKSTİL ENDÜSTRİSİ ÖRNEĞİ

Yıl 2020, Cilt: 23 Sayı: 3, 164 - 169, 01.09.2020
https://doi.org/10.17780/ksujes.723802

Öz

Günümüzde insanlar bir günün önemli bir bölümünü ya kapalı ya da yarı kapalı ortamlarda geçirmektedirler. Bu nedenle iç ortam hava kalitesi son yıllarda çok önemli bir araştırma konusu haline gelmiştir. İç ortam havası bu ortamlarda yapılan faaliyetin türüne göre değişkenlik göstermektedir. Bu faaliyetler; ısıtma ve soğutma, nüfus sayısı, bina yapı malzemeleri, sigara içilmesi vb. olarak sıralanabilir. Ayrıca dış atmosferden kapalı mekanlara doğru oluşan taşınımlar da iç ortamın bileşenleri üzerinde etkili olmaktadır. En genel hatlarıyla iç ortamlarda bulunması muhtemel olan kirleticiler katı (Partikül Madde (PM), toz), sıvı (mist, sprey) ve gaz (organik gazlar, karbonmonoksit (CO), Uçucu Organik Bileşikler (VOC)) olmak üzere değişik fazlarda olabilirler. Yapılan çalışmada tekstil endüstrisi iç ortamında tespit edilen PM’in kaynak analizleri yapılmıştır. Kaynak analizleri taramalı elektron mikroskobu (SEM) elektron mikroskobik yöntemi ile belirlenmiş, mikroskobik görüntüleme sonucu elde edilen PM’in şekillerine göre kaynakların tahminleri yapılmıştır. Sonuçlar itibariyle, iç ortamdaki PM grubu kirleticinin büyük bir bölümünün, tekstil lifleri kaynaklı olduğu, geri kalan kısmının ise dış ortam kaynaklı trafik etkisinde oluşan PM olabileceği kanısına varılmıştır.

Teşekkür

Katkılarından dolayı Kahramanmaraş Sütçü İmam Üniversitesi ÜSKİM'e teşekkür ederiz.

Kaynakça

  • Akal, D. (2013). İç Ortam Hava Kirliliği ve Çalışanlara Olumsuz Etkileri. ÇSGB Çalışma Dünyası Dergisi, 1(1), 112–119.
  • ASHRAE. (2003). Indoor Environmental Health. Atlanta, USA: ASHRAE Handbook CD, Fundamentals-2001.
  • Casuccio, G. S., Schlaegle, S. F., Lersch, T. L., Huffman, G. P., Chen, Y., & Shah, N. (2004). Measurement of fine particulate matter using electron microscopy techniques. Fuel Processing Technology. https://doi.org/10.1016/j.fuproc.2003.11.026
  • Koval, S., Krahenbuhl, G., Warren, K., & O’Brien, G. (2018). Optical microscopy as a new approach for characterising dust particulates in urban environment. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2018.06.038
  • Ličbinský, R., Frýbort, A., Huzlík, J., Adamec, V., Effenberger, K., Mikuška, P., … Křůmal, K. (2010). Usage of Scanning Electron Microscopy for Particulate Matter Sources Identification. Transactions on Transport Sciences. https://doi.org/10.2478/v10158-010-0019-8
  • Štrbová, K., Raclavská, H., & Bílek, J. (2017). Impact of fugitive sources and meteorological parameters on vertical distribution of particulate matter over the industrial agglomeration. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2017.06.001
  • USEPA. (2004a). Air Quality Criteria for Particulate Matter. Air Quality Criteria for Particulate Matter, I(October), 900. Retrieved from http://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=87903#tab-3
  • USEPA, U. S. E. P. A. (2004b). Air Quality Criteria for Particulate Matter October 2004, Volume 2. Air Quality Criteria for Particulate Matter, II(October), 1148. Retrieved from file:///C:/Users/Laíssa/Downloads/VOL_II_FINAL_PM_AQCD_OCT2004.PDF
  • Wang, J., Hu, Z., Chen, Y., Chen, Z., & Xu, S. (2013). Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2012.10.070
  • Weijers, E., Even, A., Kos, G., Groot, A., Erisman, J. W., & Brink, H. M. (2001, August 1). PARTICULATE MATTER IN URBAN AIR: HEALTH RISKS, INSTRUMENTATION AND MEASUREMENTS, AND POLITICAL AWARENESS.

SOURCE ANALYSIS PARTICULE MATTER FROM INDOOR AIR POLLUTANTS IN INDUSTRIAL AREAS USING SEM: CASE OF TEXTILE INDUSTRY

Yıl 2020, Cilt: 23 Sayı: 3, 164 - 169, 01.09.2020
https://doi.org/10.17780/ksujes.723802

Öz

Nowadays, people spend a significant part of a day either in closed or semi-closed environments. Therefore, indoor air quality has become a very important research topic in recent years. Indoor air varies according to the type of activity performed in these environments. These activities; heating and cooling, population number, building materials, smoking and so on. In addition, transports from the outdoor atmosphere to the indoor spaces have an effect on the components of the indoor environment. Pollutants, which are most likely to be found indoors, can be in various phases, including solid (particulate matter (PM), powder), liquid (mist, spray) and gas (organic gases, carbon monoxide CO, Volatile Organic Compounds (VOC)). In this study, source analysis of PM, which is determined in textile industry indoor environment, was carried out. Source analyzes were accomplished by SEM electron microscopic method and the source estimations were made according to the shapes of PM obtained by microscopic imaging. According to the results, it is concluded that most of the indoor PM group pollutants are originated from textile fibers and the rest may be PM caused by outdoor traffic.

Kaynakça

  • Akal, D. (2013). İç Ortam Hava Kirliliği ve Çalışanlara Olumsuz Etkileri. ÇSGB Çalışma Dünyası Dergisi, 1(1), 112–119.
  • ASHRAE. (2003). Indoor Environmental Health. Atlanta, USA: ASHRAE Handbook CD, Fundamentals-2001.
  • Casuccio, G. S., Schlaegle, S. F., Lersch, T. L., Huffman, G. P., Chen, Y., & Shah, N. (2004). Measurement of fine particulate matter using electron microscopy techniques. Fuel Processing Technology. https://doi.org/10.1016/j.fuproc.2003.11.026
  • Koval, S., Krahenbuhl, G., Warren, K., & O’Brien, G. (2018). Optical microscopy as a new approach for characterising dust particulates in urban environment. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2018.06.038
  • Ličbinský, R., Frýbort, A., Huzlík, J., Adamec, V., Effenberger, K., Mikuška, P., … Křůmal, K. (2010). Usage of Scanning Electron Microscopy for Particulate Matter Sources Identification. Transactions on Transport Sciences. https://doi.org/10.2478/v10158-010-0019-8
  • Štrbová, K., Raclavská, H., & Bílek, J. (2017). Impact of fugitive sources and meteorological parameters on vertical distribution of particulate matter over the industrial agglomeration. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2017.06.001
  • USEPA. (2004a). Air Quality Criteria for Particulate Matter. Air Quality Criteria for Particulate Matter, I(October), 900. Retrieved from http://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=87903#tab-3
  • USEPA, U. S. E. P. A. (2004b). Air Quality Criteria for Particulate Matter October 2004, Volume 2. Air Quality Criteria for Particulate Matter, II(October), 1148. Retrieved from file:///C:/Users/Laíssa/Downloads/VOL_II_FINAL_PM_AQCD_OCT2004.PDF
  • Wang, J., Hu, Z., Chen, Y., Chen, Z., & Xu, S. (2013). Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2012.10.070
  • Weijers, E., Even, A., Kos, G., Groot, A., Erisman, J. W., & Brink, H. M. (2001, August 1). PARTICULATE MATTER IN URBAN AIR: HEALTH RISKS, INSTRUMENTATION AND MEASUREMENTS, AND POLITICAL AWARENESS.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği
Bölüm Çevre Mühendisliği
Yazarlar

Nihan Babaoğlu 0000-0003-3356-9407

Celal Berk 0000-0001-6265-0779

Sefa Kaya 0000-0002-4186-3385

Yayımlanma Tarihi 1 Eylül 2020
Gönderilme Tarihi 20 Nisan 2020
Yayımlandığı Sayı Yıl 2020Cilt: 23 Sayı: 3

Kaynak Göster

APA Babaoğlu, N., Berk, C., & Kaya, S. (2020). ENDÜSTRİYEL ALANLARDA İÇ ORTAM HAVA KİRLETİCİLERİNDEN PARTİKÜL MADDENİN ELEKTRON MİKROSKOBU İLE KAYNAK ANALİZİ: TEKSTİL ENDÜSTRİSİ ÖRNEĞİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 23(3), 164-169. https://doi.org/10.17780/ksujes.723802