Araştırma Makalesi
BibTex RIS Kaynak Göster

NEMATİK SIVI KRİSTALE V2O5 NANOPARÇACIK KATKILANDIRILMASI İLE DİELEKTRİK DAVRANIŞININ İNCELENMESİ

Yıl 2024, Cilt: 27 Sayı: 1, 61 - 68, 03.03.2024
https://doi.org/10.17780/ksujes.1336790

Öz

Bu çalışmada Vanadyum Pentaoksit (V2O5) nanoparçacık, E7 nematik sıvı kristaline farklı oranlarda katkılanarak numuneler elde edilmiştir. Bu numunelerin gerçel ve sanal dielektrik sabitlerinin frekansa ve voltaja bağlı olarak değişimleri empedans analizör ile 100 Hz-20 MHz frekans ve 0-40 Volt DC voltaj aralığında oda sıcaklığında incelenmiştir. Gerçel dielektrik sabiti düşük frekanslarda hızlı bir düşüş göstermiştir, sonra yaklaşık sabit kalarak çok az azalarak değişmiştir, 0.2 MHz frekans değerinde azalarak sıfıra gitmektedir. Sanal dielektrik kısmı düşük frekanslarda azalmakta, sonra neredeyse sabit gibi davranmakta ve daha yüksek frekanslarda artarak yaklaşık 3 MHz frekans civarında pik yapmaktadır ve daha yüksek frekanslarda azalarak sıfıra yaklaşmaktadır. Gerçel dielektrik sabiti düşük voltajlarda birden bire artış göstermekte ve daha sonra daha yüksek voltajlarda sabit bir şekilde devam etmektedir. Sanal dielektrik kısmı ise düşük voltajlarda hızlıca azalırken, belirli bir voltaja geldiğinde yeniden artışa geçmekte ve bir pik yaptıktan sonra azalarak sıfıra yaklaşmaktadır. Numunelerin gevşeme frekansı ve zamanını belirlemek için dielektrik sabitinin gerçel ve sanal kısım eksenlerinde Cole-Cole grafiği elde edilmiştir. Nematik sıvı kristalin iyonları ile katkı malzemesi V2O5 nanoparçagın iyonlarının etkileştiği, grafikteki saf sıvı kristale ait yarım çemberin yarıçapının katkılı numunelerinkinden büyük olduğu görülmektedir. Bu ise V2O5 malzemenin elektrik enerjisi depolama aygıtlarında kullanımı ile uyumlu olduğunu göstermektedir.

Kaynakça

  • Ahmed, H. A., & Aboelnaga A. (2022). Synthesis and Mesomorphic Study of New Phenylthiophene Liquid Crystals. Liquid Crystals 49(6):804–11. https://doi.org/10.1080/02678292.2021.2008032
  • Bleha, W. P., Lipton, L. T., Wiener-Avnear, E., Grinberg, J., Reif, P. G., Casasent, D., Brown, H. B. & Markevitch B. V. (1978). Application of the Liquid Crystal Light Valve to Real-Time Optical Data Processing. Optical Engineering 17(4):371–84. https://doi.org/10.1117/12.7972245
  • Bronnikov, S., Kostromin S., and Zuev V. (2013). Polymer-Dispersed Liquid Crystals: Progress in Preparation, Investigation, and Application. Journal of Macromolecular Science, Part B 52(12):1718–35. https://doi.org/10.1080/00222348.2013.808926
  • Caputo, R., De Luca, A., De Sio, L., Pezzi, L., Strangi, G., Umeton, C., Veltri, A., Asquini, R., d’Alessandro, A., & Donisi, D., (2009). POLICRYPS: A Liquid Crystal Composed Nano/Microstructure with a Wide Range of Optical and Electro-Optical Applications. Journal of Optics A: Pure and Applied Optics 11(2):24017. https://doi.org/10.1088/1464-4258/11/2/024017
  • Eskalen, H., Okumuş, M., & Özğan, Ş. (2019). Electro-Optical, Thermal and Dielectric Properties of Ternary Mixture of E7/6CB/6BA Liquid Crystal Mixture Complex. Optik 187. https://doi.org/10.1016/j.ijleo.2019.02.119
  • Eskalen, H., Özğan, Ş., Alver, Ü., & Kerli, S. (2015). Electro-Optical Properties of Liquid Crystals Composite with Zinc Oxide Nanoparticles. Acta Physica Polonica, A. 127(3). https://doi.org/10.12693/APhysPolA.127.756
  • Eskalen, H., Özğan, Ş., & Kerli, S. (2019). Synthesis, Characterization of V2O5 Nanoparticle and Dispersion of Them into Nematic Liquid Crystal. Applied Physics A: Materials Science and Processing 125(12). https://doi.org/10.1007/s00339-019-3157-9.
  • Eskalen, H. (2020). “Influence of Carbon Quantum Dots on Electro–Optical Performance of Nematic Liquid Crystal.” Applied Physics A 126(9):708. https://doi.org/10.1007/s00339-020-03906-7.
  • Eskalen, H., Kerli, S., & Özğan, Ş. (2017). Hydrothermally Produced Cobalt Oxide Nanostructures at Different Temperatures and Effect on Phase Transition Temperature and Threshold Voltage of Nematic Liquid Crystal Host. In K. Maaz (ed.) Cobalt. s 71-85, IntechOpen.
  • Jánossy, I. (1994). “Molecular Interpretation of the Absorption-Induced Optical Reorientation of Nematic Liquid Crystals.” Physical Review E 49(4):2957. https://doi.org/10.1103/PhysRevE.49.2957
  • Khoo, I. (2022). Liquid Crystals. John Wiley & Sons.
  • Kim, A., Kalita, G., Kim, J.H., & Patel, R. (2021). Recent Development in Vanadium Pentoxide and Carbon Hybrid Active Materials for Energy Storage Devices. Nanomaterials 11(12):3213. https://doi.org/10.3390/nano11123213
  • Köysal, O., Okutan, M., & Gökçen, M. (2011). Investigation of Dielectric Properties and Diffraction Efficiency Enhancements Caused by Photothermal Effect in DR9 Dye-Doped Nematic Liquid Crystal. Optics Communications 284(20): 4924–28. https://doi.org/10.1016/j.optcom.2011.06.046
  • Lee, W., & Chiu, C. (2001). Observation of Self-Diffraction by Gratings in Nematic Liquid Crystals Doped with Carbon Nanotubes. Optics Letters 26(8):521–23. https://doi.org/10.1364/OL.26.000521
  • Lee, W., Gau, J. S., & Chen, H. Y. (2005). Electro-Optical Properties of Planar Nematic Cells Impregnated with Carbon Nanosolids. Applied Physics B 81(2):171–75. https://doi.org/10.1007/s00340-005-1914-2
  • Lencer, D., Salinga, M., & Wuttig, M. (2011). Design Rules for Phase‐change Materials in Data Storage Applications. Advanced Materials 23(18):2030–58. https://doi.org/10.1002/adma.201004255
  • Li, X., Yang, C., Wang, Q., Jia, D., Hu, l., Peng, Z., & Xuan, L. (2013). Enhanced Birefringence for Metallic Nanoparticle Doped Liquid Crystals. Optics Communications 286:224–27. https://doi.org/10.1016/j.optcom.2012.09.001
  • Lu, Y., & Zhou, X. (2018). Synthesis and Characterization of Nanorod-Structured Vanadium Oxides. Thin Solid Films 660:180–85. https://doi.org/10.1016/j.tsf.2018.06.020
  • Matharu, A. S., Jeeva, S., & Ramanujam, P. S. (2007). Liquid Crystals for Holographic Optical Data Storage. Chemical Society Reviews 36(12):1868–80. https://doi.org/10.1039/B706242G
  • Meier, G., Sackmann, E., & Grabmaier, J. G. (2012). Applications of Liquid Crystals. Springer Science & Business Media.
  • Okutan, M., Köysal, O., San, S. E., & Köysal, Y. (2012). Electrical Parameters of Different Concentrations of Methyl Red in Fullerene Doped Liquid Crystal. International Scholarly Research Notices. https://doi.org/10.5402/2012/596125
  • Özgan, Ş., Eskalen, H. & Tapkıranlı, Y. (2018). Thermal and Electro-Optic Properties of Graphene Oxide-Doped Hexylcyanobiphenyl Liquid Crystal. Journal of Theoretical and Applied Physics 12(3):169–76. https://doi.org/10.1007/s40094-018-0307-y.
  • Özgan, Ş., & Okumuş, M. (2011). Thermal and Spectrophotometric Analysis of Liquid Crystal 8CB/8OCB Mixtures. Brazilian Journal of Physics 41(2–3):118–22. https://doi.org/10.1007/s13538-011-0034-1.
  • Shen, W., Zhang, H., Miao, Z.& Ye, Z. (2023). Recent Progress in Functional Dye‐Doped Liquid Crystal Devices. Advanced Functional Materials 33(6):2210664. https://doi.org/10.1002/adfm.202210664
  • Stolpe, M. (2002). Determinants of Knowledge Diffusion as Evidenced in Patent Data: The Case of Liquid Crystal Display Technology. Research Policy 31(7):1181–98. https://doi.org/10.1016/S0048-7333(01)00192-5
  • Uruş, S., Çaylar, M., Eskalen, H., & Özğan, Ş. (2022). Synthesis of GO@ Fe3O4@ TiO2 Type Organic–Inorganic Nanohybrid Material: Investigation of the Effect of Nanohybrid Doped Liquid Crystal E7 and the Photocatalytic Degradation of Ciprofloxacin. Journal of Materials Science: Materials in Electronics 33(7):4314–29. https://doi.org/10.1007/s10854-021-07625-4
  • Wang, Z., Xu, T., Noel, A., Chen, Y., & Liu, T. (2021). Applications of Liquid Crystals in Biosensing. Soft Matter 17(18):4675–4702. https://doi.org/10.1039/D0SM02088E
  • Wu, K., Sun, X., Duan, C., Gao, J., & Wu, M. (2016). Vanadium Oxides (V2O5) Prepared with Different Methods for Application as Counter Electrodes in Dye-Sensitized Solar Cells (DSCs). Applied Physics A 122:1–6. https://doi.org/10.1007/s00339-016-0317-z

INVESTIGATION OF DIELECTRIC BEHAVIOR WITH V2O5 NANOPARTICLE DOPING TO NEMATIC LIQUID CRYSTAL

Yıl 2024, Cilt: 27 Sayı: 1, 61 - 68, 03.03.2024
https://doi.org/10.17780/ksujes.1336790

Öz

In this study, samples were prepared by adding Vanadium Pentoxide (V2O5) nanoparticles to the E7 nematic liquid crystal in various proportions. The real and imaginary dielectric constants of these samples were investigated at room temperature using an impedance analyzer in the frequency range of 100 Hz to 20 MHz and a DC voltage range of 0-40 Volts. The real dielectric constant showed a rapid decrease at low frequencies, then remained approximately constant with slight variations, eventually decreasing towards zero around 0.2 MHz. The imaginary dielectric component decreased at low frequencies, behaved almost as a constant, and exhibited a peak at around 3 MHz before decreasing towards zero at higher frequencies. The real dielectric constant exhibited a sudden increase at low voltages and then continued to remain relatively constant at higher voltages. The imaginary dielectric component, on the other hand, decreased rapidly at low voltages, then increased again at a certain voltage, formed a peak, and decreased towards zero. To determine the relaxation frequency and time of the samples, Cole-Cole graphs were obtained for the real and imaginary parts of the dielectric constant. It was observed that the radius of the semicircle associated with the pure liquid crystal in the graph was larger for the doped samples, indicating an interaction between the ions of the nematic liquid crystal and the V2O5 nanoparticles. This suggests compatibility with the use of V2O5 material in electrical energy storage devices.

Kaynakça

  • Ahmed, H. A., & Aboelnaga A. (2022). Synthesis and Mesomorphic Study of New Phenylthiophene Liquid Crystals. Liquid Crystals 49(6):804–11. https://doi.org/10.1080/02678292.2021.2008032
  • Bleha, W. P., Lipton, L. T., Wiener-Avnear, E., Grinberg, J., Reif, P. G., Casasent, D., Brown, H. B. & Markevitch B. V. (1978). Application of the Liquid Crystal Light Valve to Real-Time Optical Data Processing. Optical Engineering 17(4):371–84. https://doi.org/10.1117/12.7972245
  • Bronnikov, S., Kostromin S., and Zuev V. (2013). Polymer-Dispersed Liquid Crystals: Progress in Preparation, Investigation, and Application. Journal of Macromolecular Science, Part B 52(12):1718–35. https://doi.org/10.1080/00222348.2013.808926
  • Caputo, R., De Luca, A., De Sio, L., Pezzi, L., Strangi, G., Umeton, C., Veltri, A., Asquini, R., d’Alessandro, A., & Donisi, D., (2009). POLICRYPS: A Liquid Crystal Composed Nano/Microstructure with a Wide Range of Optical and Electro-Optical Applications. Journal of Optics A: Pure and Applied Optics 11(2):24017. https://doi.org/10.1088/1464-4258/11/2/024017
  • Eskalen, H., Okumuş, M., & Özğan, Ş. (2019). Electro-Optical, Thermal and Dielectric Properties of Ternary Mixture of E7/6CB/6BA Liquid Crystal Mixture Complex. Optik 187. https://doi.org/10.1016/j.ijleo.2019.02.119
  • Eskalen, H., Özğan, Ş., Alver, Ü., & Kerli, S. (2015). Electro-Optical Properties of Liquid Crystals Composite with Zinc Oxide Nanoparticles. Acta Physica Polonica, A. 127(3). https://doi.org/10.12693/APhysPolA.127.756
  • Eskalen, H., Özğan, Ş., & Kerli, S. (2019). Synthesis, Characterization of V2O5 Nanoparticle and Dispersion of Them into Nematic Liquid Crystal. Applied Physics A: Materials Science and Processing 125(12). https://doi.org/10.1007/s00339-019-3157-9.
  • Eskalen, H. (2020). “Influence of Carbon Quantum Dots on Electro–Optical Performance of Nematic Liquid Crystal.” Applied Physics A 126(9):708. https://doi.org/10.1007/s00339-020-03906-7.
  • Eskalen, H., Kerli, S., & Özğan, Ş. (2017). Hydrothermally Produced Cobalt Oxide Nanostructures at Different Temperatures and Effect on Phase Transition Temperature and Threshold Voltage of Nematic Liquid Crystal Host. In K. Maaz (ed.) Cobalt. s 71-85, IntechOpen.
  • Jánossy, I. (1994). “Molecular Interpretation of the Absorption-Induced Optical Reorientation of Nematic Liquid Crystals.” Physical Review E 49(4):2957. https://doi.org/10.1103/PhysRevE.49.2957
  • Khoo, I. (2022). Liquid Crystals. John Wiley & Sons.
  • Kim, A., Kalita, G., Kim, J.H., & Patel, R. (2021). Recent Development in Vanadium Pentoxide and Carbon Hybrid Active Materials for Energy Storage Devices. Nanomaterials 11(12):3213. https://doi.org/10.3390/nano11123213
  • Köysal, O., Okutan, M., & Gökçen, M. (2011). Investigation of Dielectric Properties and Diffraction Efficiency Enhancements Caused by Photothermal Effect in DR9 Dye-Doped Nematic Liquid Crystal. Optics Communications 284(20): 4924–28. https://doi.org/10.1016/j.optcom.2011.06.046
  • Lee, W., & Chiu, C. (2001). Observation of Self-Diffraction by Gratings in Nematic Liquid Crystals Doped with Carbon Nanotubes. Optics Letters 26(8):521–23. https://doi.org/10.1364/OL.26.000521
  • Lee, W., Gau, J. S., & Chen, H. Y. (2005). Electro-Optical Properties of Planar Nematic Cells Impregnated with Carbon Nanosolids. Applied Physics B 81(2):171–75. https://doi.org/10.1007/s00340-005-1914-2
  • Lencer, D., Salinga, M., & Wuttig, M. (2011). Design Rules for Phase‐change Materials in Data Storage Applications. Advanced Materials 23(18):2030–58. https://doi.org/10.1002/adma.201004255
  • Li, X., Yang, C., Wang, Q., Jia, D., Hu, l., Peng, Z., & Xuan, L. (2013). Enhanced Birefringence for Metallic Nanoparticle Doped Liquid Crystals. Optics Communications 286:224–27. https://doi.org/10.1016/j.optcom.2012.09.001
  • Lu, Y., & Zhou, X. (2018). Synthesis and Characterization of Nanorod-Structured Vanadium Oxides. Thin Solid Films 660:180–85. https://doi.org/10.1016/j.tsf.2018.06.020
  • Matharu, A. S., Jeeva, S., & Ramanujam, P. S. (2007). Liquid Crystals for Holographic Optical Data Storage. Chemical Society Reviews 36(12):1868–80. https://doi.org/10.1039/B706242G
  • Meier, G., Sackmann, E., & Grabmaier, J. G. (2012). Applications of Liquid Crystals. Springer Science & Business Media.
  • Okutan, M., Köysal, O., San, S. E., & Köysal, Y. (2012). Electrical Parameters of Different Concentrations of Methyl Red in Fullerene Doped Liquid Crystal. International Scholarly Research Notices. https://doi.org/10.5402/2012/596125
  • Özgan, Ş., Eskalen, H. & Tapkıranlı, Y. (2018). Thermal and Electro-Optic Properties of Graphene Oxide-Doped Hexylcyanobiphenyl Liquid Crystal. Journal of Theoretical and Applied Physics 12(3):169–76. https://doi.org/10.1007/s40094-018-0307-y.
  • Özgan, Ş., & Okumuş, M. (2011). Thermal and Spectrophotometric Analysis of Liquid Crystal 8CB/8OCB Mixtures. Brazilian Journal of Physics 41(2–3):118–22. https://doi.org/10.1007/s13538-011-0034-1.
  • Shen, W., Zhang, H., Miao, Z.& Ye, Z. (2023). Recent Progress in Functional Dye‐Doped Liquid Crystal Devices. Advanced Functional Materials 33(6):2210664. https://doi.org/10.1002/adfm.202210664
  • Stolpe, M. (2002). Determinants of Knowledge Diffusion as Evidenced in Patent Data: The Case of Liquid Crystal Display Technology. Research Policy 31(7):1181–98. https://doi.org/10.1016/S0048-7333(01)00192-5
  • Uruş, S., Çaylar, M., Eskalen, H., & Özğan, Ş. (2022). Synthesis of GO@ Fe3O4@ TiO2 Type Organic–Inorganic Nanohybrid Material: Investigation of the Effect of Nanohybrid Doped Liquid Crystal E7 and the Photocatalytic Degradation of Ciprofloxacin. Journal of Materials Science: Materials in Electronics 33(7):4314–29. https://doi.org/10.1007/s10854-021-07625-4
  • Wang, Z., Xu, T., Noel, A., Chen, Y., & Liu, T. (2021). Applications of Liquid Crystals in Biosensing. Soft Matter 17(18):4675–4702. https://doi.org/10.1039/D0SM02088E
  • Wu, K., Sun, X., Duan, C., Gao, J., & Wu, M. (2016). Vanadium Oxides (V2O5) Prepared with Different Methods for Application as Counter Electrodes in Dye-Sensitized Solar Cells (DSCs). Applied Physics A 122:1–6. https://doi.org/10.1007/s00339-016-0317-z
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kompozit ve Hibrit Malzemeler
Bölüm Malzeme Bilimi ve Mühendisliği
Yazarlar

Şükrü Özğan 0000-0001-9334-327X

Yayımlanma Tarihi 3 Mart 2024
Gönderilme Tarihi 2 Ağustos 2023
Yayımlandığı Sayı Yıl 2024Cilt: 27 Sayı: 1

Kaynak Göster

APA Özğan, Ş. (2024). NEMATİK SIVI KRİSTALE V2O5 NANOPARÇACIK KATKILANDIRILMASI İLE DİELEKTRİK DAVRANIŞININ İNCELENMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(1), 61-68. https://doi.org/10.17780/ksujes.1336790