Araştırma Makalesi
BibTex RIS Kaynak Göster

ATIK ÇELİK LİFLERLE GÜÇLENDİRİLMİŞ GEOPOLİMER BETONLARDA KARIŞIK MOD KIRILMASI

Yıl 2024, Cilt: 27 Sayı: 1, 232 - 242, 03.03.2024
https://doi.org/10.17780/ksujes.1375088

Öz

Yük deplasman eğrisinin uzun kuyruk kısmından dolayı, çelik lifli kompozitlerin eğilme davranışının değerlendirilmesinde dayanım kriteri tek başına doğru bir değerlendirme için yeterli değildir. Bu nedenle, lifli kompozitlerin kırılma karakterleri dünya genelinde giderek önem kazanmaktadır. Mevcut çalışmada, atık çelik liflerle güçlendirilmiş geopolimer betonların Mod-II kırılma performansı deneysel olarak incelenmiştir. Çalışmadaki temel parametreler çelik lif miktarı (kütlece %0 ve %2) ve çentik öteleme oranlarıdır (β = 0, 0.2 ve 0.4). Çok sayıda çentikli numuneler üretilmiş ve deformasyon kontrollü üç noktalı eğilme deneyi ile test edilmiştir. Eleman yüzeylerindeki deformasyon dağılımları dijital görüntü korelasyonu metodu ile hesaplanmıştır. Elde edilen sonuçlar ilk çatlama yükü, maksimum yük, kritik çatlak ağzı açılma deplasmanı, kritik çatlak ağzı kayma deplasmanı ve kırılma enerjisi açısından irdelenmiştir. Elde edilen deneysel sonuçlardan, kullanılan çelik liften dolayı maksimum eğilme yükünün 0, 0.2, ve 0.4 çentik öteleme oranlarında sırasıyla 666%, 1327%, ve 400% arttığı görülmüştür. Lif içermeyen elemanların kırılma enerjisi çentik öteleme oranıyla doğrusal olarak değişmekteyken, çelik liflerin homojen olmayan dağılımından dolayı lifli elemanların kırılma enerjisinde dalgalanmalar görülmüştür.

Kaynakça

  • Ahmad, I., Qing, L., Khan, S., Cao, G., Ijaz, N., & Mu, R. (2021). Experimental investigations on fracture parameters of random and aligned steel fiber reinforced cementitious composites. Construction and Building Materials, 284, 122680. https://doi.org/10.1016/j.conbuildmat.2021.122680
  • Aisheh, Y. I. A., Atrushi, D. S., Akeed, M. H., Qaidi, S., & Tayeh, B. A. (2022). Influence of steel fibers and microsilica on the mechanical properties of ultra-high-performance geopolymer concrete (UHP-GPC). Case Studies in Construction Materials, 17, e01245. https://doi.org/10.1016/j.cscm.2022.e01245
  • Al-Rawi, S., & Taysi, N. (2018). Performance of self-compacting geopolymer concrete with and without GGBFS and steel fiber. Advances in Concrete Construction, 6(4), 323-344. https://doi.org/10.12989/acc.2018.6.4.323
  • Almutairi, A. L., Tayeh, B. A., Adesina, A., Isleem, H. F., & Zeyad, A. M. (2021). Potential applications of geopolymer concrete in construction: A review. Case Studies in Construction Materials, 15, e00733. https://doi.org/10.1016/j.cscm.2021.e00733
  • Alsaif, A. S., & Albidah, A. S. (2022). Compressive and flexural characteristics of geopolymer rubberized concrete reinforced with recycled tires steel fibers. Materials Today: Proceedings, 65(2), 1230-1236. https://doi.org/10.1016/j.matpr.2022.04.182
  • Althoey, F., Zaid, O., Alsharari, F., Yosri, A. M., & Isleem, H. F. (2023). Evaluating the impact of nano-silica on characteristics of self-compacting geopolymer concrete with waste tire steel fiber. Archives of Civil and Mechanical Engineering, 23, 48. https://doi.org/10.1007/s43452-022-00587-2
  • Amran, Y. H. M., Alyousef, R., Alabduljabbar, H., & El-Zeadani, M. (2020). Clean production and properties of geopolymer concrete; A review. Journal of Cleaner Production, 251, 119679. https://doi.org/10.1016/j.jclepro.2019.119679
  • Blaber, J., Adair, B., & Antoniou, A. (2015). Ncorr: Open-Source 2D Digital Image Correlation Matlab Software. Experimental Mechanics, 55(6), 1105-1122. https://doi.org/10.1007/s11340-015-0009-1
  • Celik, A. I., & Ozkilic, Y. O. (2023). Geopolymer concrete with high strength, workability and setting time using recycled steel wires and basalt powder. Steel and Composite Structures, 46(5), 689-707. https://doi.org/10.12989/scs.2023.46.5.689
  • Celikten, S. (2022). Properties of recycled steel fibre reinforced expanded perlite based geopolymer mortars. Advances in Concrete Construction, 13(1), 25-34. https://doi.org/10.12989/acc.2022.13.1.025
  • Davidovits, J. (1991). Geopolymers: Inorganic polymeric new materials. Journal of thermal analysis, 37(8), 1633-1656. https://doi.org/10.1007/BF01912193
  • Ding, Y., & Bai, Y. L. (2018). Fracture Properties and Softening Curves of Steel Fiber-Reinforced Slag-Based Geopolymer Mortar and Concrete. Materials, 11(8), 1445. https://doi.org/10.3390/ma11081445
  • Ding, Y., Dai, J.-G., & Shi, C.-J. (2016). Mechanical properties of alkali-activated concrete: A state-of-the-art review. Construction and Building Materials, 127, 68-79. https://doi.org/10.1016/j.conbuildmat.2016.09.121
  • Eskandarinia, M., Esmailzade, M., Hojatkashani, A., Rahmani, A., & Jahandari, S. (2022). Optimized Alkali-Activated Slag-Based Concrete Reinforced with Recycled Tire Steel Fiber. Materials, 15(19), 6623. https://doi.org/10.3390/ma15196623
  • Frazão, C., Barros, J., Bogas, J. A., García-Cortés, V., & Valente, T. (2022). Technical and environmental potentialities of recycled steel fiber reinforced concrete for structural applications. Journal of Building Engineering, 45, 103579. https://doi.org/10.1016/j.jobe.2021.103579
  • Gomes, R. F., Dias, D. P., & Silva, F. D. (2020). Determination of the fracture parameters of steel fiber-reinforced geopolymer concrete. Theoretical and Applied Fracture Mechanics, 107, 102568. doi:10.1016/j.tafmec.2020.102568
  • Laxmi, G., & Patil, S. G. (2022). Effect of fiber types, shape, aspect ratio and volume fraction on properties of geopolymer concrete - A review. Materials Today: Proceedings, 65(2), 1086-1094. https://doi.org/10.1016/j.matpr.2022.04.157
  • Liu, Y. W., Shi, C. J., Zhang, Z. H., Li, N., & Shi, D. (2020). Mechanical and fracture properties of ultra-high performance geopolymer concrete: Effects of steel fiber and silica fume. Cement & Concrete Composites, 112, 103665. https://doi.org/10.1016/j.cemconcomp.2020.103665
  • Mousavinejad, S. H. G., & Gashti, M. F. (2021). Effects of alkaline solution to binder ratio on fracture parameters of steel fiber reinforced heavyweight geopolymer concrete. Theoretical and Applied Fracture Mechanics, 113, 102967. https://doi.org/10.1016/j.tafmec.2021.102967
  • Mucsi, G., Szenczi, A., & Nagy, S. (2018). Fiber reinforced geopolymer from synergetic utilization of fly ash and waste tire. Journal of Cleaner Production, 178, 429-440. https://doi.org/10.1016/j.jclepro.2018.01.018
  • Nunes, L. C. S., & Reis J. M. L. (2014). Experimental investigation of mixed-mode-I/II fracture in polymer mortars using digital image correlation method. Latin American Journal of Solids and Structures, 11(2), 330-343. https://doi.org/ 10.1590/s1679-78252014000200011
  • Ranjbar, N., & Zhang, M. Z. (2020). Fiber-reinforced geopolymer composites: A review. Cement & Concrete Composites, 107, 103498. https://doi.org/10.1016/j.cemconcomp.2019.103498
  • Rashad, A. M. (2020). Effect of steel fibers on geopolymer properties - The best synopsis for civil engineer. Construction and Building Materials, 246, 118534. https://doi.org/10.1016/j.conbuildmat.2020.118534
  • RILEM-Draft-Recommendation. (1985). Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Materials and Structures, 18(106), 285-290. https://doi.org/10.1007/BF02472918
  • Shi, X., Brescia-Norambuena, L., Tavares, C., & Grasley, Z. (2020). Semicircular bending fracture test to evaluate fracture properties and ductility of cement mortar reinforced by scrap tire recycled steel fiber. Engineering Fracture Mechanics, 236, 107228. https://doi.org/10.1016/j.engfracmech.2020.107228
  • Wang, Y., Chan, C. L., Leong, S. H., & Zhang, M. Z. (2020). Engineering properties of strain hardening geopolymer composites with hybrid polyvinyl alcohol and recycled steel fibres. Construction and Building Materials, 261, 120585. https://doi.org/10.1016/j.conbuildmat.2020.120585
  • Yolcu, A., Karakoc, M. B., Ekinci, E., Ozcan, A., & Sagir, M. A. (2022). Effect of binder dosage and the use of waste rubber fiber on the mechanical and durability performance of geopolymer concrete. Journal of Building Engineering, 61, 105162. https://doi.org/10.1016/j.jobe.2022.105162
  • Zhang, P., Wang, J., Li, Q. F., Wan, J. Y., & Ling, Y. F. (2021). Mechanical and fracture properties of steel fiber-reinforced geopolymer concrete. Science and Engineering of Composite Materials, 28(1), 299-313. https://doi.org/10.1515/secm-2021-0030
  • Zhong, H., Poon, E. W., Chen, K., & Zhang, M. Z. (2019). Engineering properties of crumb rubber alkali-activated mortar reinforced with recycled steel fibres. Journal of Cleaner Production, 238, 117950. https://doi.org/10.1016/j.jclepro.2019.117950

MIXED MODE FRACTURE OF THE GEOPOLYMER COMPOSITES REINFORCED WITH RECYCLED STEEL FIBERS

Yıl 2024, Cilt: 27 Sayı: 1, 232 - 242, 03.03.2024
https://doi.org/10.17780/ksujes.1375088

Öz

For the fiber-reinforced composites, strength-based criteria alone may fail to evaluate the bending response due to the long tail of the load-displacement curve. Hence, the fracture characterization of fibered composites has gained great attention worldwide. In this study, the mixed-mode fracture performance of the recycled steel fiber-reinforced geopolymer concrete was examined experimentally. The main test parameters were the amount of steel fibers (0 and 2% by mass) and the offset ratios of the edge notch (β = 0, 0.2, and 0.4). Several notched prisms were produced and tested under a deformation-controlled three-point bending test. Deformation maps on the surface of the specimens were derived through the digital image correlation method. Experimental results were discussed concerning the first cracking load, ultimate load, critical crack mouth opening displacement, critical crack mouth sliding displacement, and fracture energy. Based on the experimental findings, it can be stated that the peak flexural loads were increased by 666%, 1327%, and 400%, respectively for the 0, 0.2, and 0.4 notch offset ratios due to the use of recycled steel fiber. The fracture energies of the plain specimens were proportional to the notch offset ratio, but they fluctuated for the fiber-reinforced specimens because of the uneven distribution of fibers.

Kaynakça

  • Ahmad, I., Qing, L., Khan, S., Cao, G., Ijaz, N., & Mu, R. (2021). Experimental investigations on fracture parameters of random and aligned steel fiber reinforced cementitious composites. Construction and Building Materials, 284, 122680. https://doi.org/10.1016/j.conbuildmat.2021.122680
  • Aisheh, Y. I. A., Atrushi, D. S., Akeed, M. H., Qaidi, S., & Tayeh, B. A. (2022). Influence of steel fibers and microsilica on the mechanical properties of ultra-high-performance geopolymer concrete (UHP-GPC). Case Studies in Construction Materials, 17, e01245. https://doi.org/10.1016/j.cscm.2022.e01245
  • Al-Rawi, S., & Taysi, N. (2018). Performance of self-compacting geopolymer concrete with and without GGBFS and steel fiber. Advances in Concrete Construction, 6(4), 323-344. https://doi.org/10.12989/acc.2018.6.4.323
  • Almutairi, A. L., Tayeh, B. A., Adesina, A., Isleem, H. F., & Zeyad, A. M. (2021). Potential applications of geopolymer concrete in construction: A review. Case Studies in Construction Materials, 15, e00733. https://doi.org/10.1016/j.cscm.2021.e00733
  • Alsaif, A. S., & Albidah, A. S. (2022). Compressive and flexural characteristics of geopolymer rubberized concrete reinforced with recycled tires steel fibers. Materials Today: Proceedings, 65(2), 1230-1236. https://doi.org/10.1016/j.matpr.2022.04.182
  • Althoey, F., Zaid, O., Alsharari, F., Yosri, A. M., & Isleem, H. F. (2023). Evaluating the impact of nano-silica on characteristics of self-compacting geopolymer concrete with waste tire steel fiber. Archives of Civil and Mechanical Engineering, 23, 48. https://doi.org/10.1007/s43452-022-00587-2
  • Amran, Y. H. M., Alyousef, R., Alabduljabbar, H., & El-Zeadani, M. (2020). Clean production and properties of geopolymer concrete; A review. Journal of Cleaner Production, 251, 119679. https://doi.org/10.1016/j.jclepro.2019.119679
  • Blaber, J., Adair, B., & Antoniou, A. (2015). Ncorr: Open-Source 2D Digital Image Correlation Matlab Software. Experimental Mechanics, 55(6), 1105-1122. https://doi.org/10.1007/s11340-015-0009-1
  • Celik, A. I., & Ozkilic, Y. O. (2023). Geopolymer concrete with high strength, workability and setting time using recycled steel wires and basalt powder. Steel and Composite Structures, 46(5), 689-707. https://doi.org/10.12989/scs.2023.46.5.689
  • Celikten, S. (2022). Properties of recycled steel fibre reinforced expanded perlite based geopolymer mortars. Advances in Concrete Construction, 13(1), 25-34. https://doi.org/10.12989/acc.2022.13.1.025
  • Davidovits, J. (1991). Geopolymers: Inorganic polymeric new materials. Journal of thermal analysis, 37(8), 1633-1656. https://doi.org/10.1007/BF01912193
  • Ding, Y., & Bai, Y. L. (2018). Fracture Properties and Softening Curves of Steel Fiber-Reinforced Slag-Based Geopolymer Mortar and Concrete. Materials, 11(8), 1445. https://doi.org/10.3390/ma11081445
  • Ding, Y., Dai, J.-G., & Shi, C.-J. (2016). Mechanical properties of alkali-activated concrete: A state-of-the-art review. Construction and Building Materials, 127, 68-79. https://doi.org/10.1016/j.conbuildmat.2016.09.121
  • Eskandarinia, M., Esmailzade, M., Hojatkashani, A., Rahmani, A., & Jahandari, S. (2022). Optimized Alkali-Activated Slag-Based Concrete Reinforced with Recycled Tire Steel Fiber. Materials, 15(19), 6623. https://doi.org/10.3390/ma15196623
  • Frazão, C., Barros, J., Bogas, J. A., García-Cortés, V., & Valente, T. (2022). Technical and environmental potentialities of recycled steel fiber reinforced concrete for structural applications. Journal of Building Engineering, 45, 103579. https://doi.org/10.1016/j.jobe.2021.103579
  • Gomes, R. F., Dias, D. P., & Silva, F. D. (2020). Determination of the fracture parameters of steel fiber-reinforced geopolymer concrete. Theoretical and Applied Fracture Mechanics, 107, 102568. doi:10.1016/j.tafmec.2020.102568
  • Laxmi, G., & Patil, S. G. (2022). Effect of fiber types, shape, aspect ratio and volume fraction on properties of geopolymer concrete - A review. Materials Today: Proceedings, 65(2), 1086-1094. https://doi.org/10.1016/j.matpr.2022.04.157
  • Liu, Y. W., Shi, C. J., Zhang, Z. H., Li, N., & Shi, D. (2020). Mechanical and fracture properties of ultra-high performance geopolymer concrete: Effects of steel fiber and silica fume. Cement & Concrete Composites, 112, 103665. https://doi.org/10.1016/j.cemconcomp.2020.103665
  • Mousavinejad, S. H. G., & Gashti, M. F. (2021). Effects of alkaline solution to binder ratio on fracture parameters of steel fiber reinforced heavyweight geopolymer concrete. Theoretical and Applied Fracture Mechanics, 113, 102967. https://doi.org/10.1016/j.tafmec.2021.102967
  • Mucsi, G., Szenczi, A., & Nagy, S. (2018). Fiber reinforced geopolymer from synergetic utilization of fly ash and waste tire. Journal of Cleaner Production, 178, 429-440. https://doi.org/10.1016/j.jclepro.2018.01.018
  • Nunes, L. C. S., & Reis J. M. L. (2014). Experimental investigation of mixed-mode-I/II fracture in polymer mortars using digital image correlation method. Latin American Journal of Solids and Structures, 11(2), 330-343. https://doi.org/ 10.1590/s1679-78252014000200011
  • Ranjbar, N., & Zhang, M. Z. (2020). Fiber-reinforced geopolymer composites: A review. Cement & Concrete Composites, 107, 103498. https://doi.org/10.1016/j.cemconcomp.2019.103498
  • Rashad, A. M. (2020). Effect of steel fibers on geopolymer properties - The best synopsis for civil engineer. Construction and Building Materials, 246, 118534. https://doi.org/10.1016/j.conbuildmat.2020.118534
  • RILEM-Draft-Recommendation. (1985). Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Materials and Structures, 18(106), 285-290. https://doi.org/10.1007/BF02472918
  • Shi, X., Brescia-Norambuena, L., Tavares, C., & Grasley, Z. (2020). Semicircular bending fracture test to evaluate fracture properties and ductility of cement mortar reinforced by scrap tire recycled steel fiber. Engineering Fracture Mechanics, 236, 107228. https://doi.org/10.1016/j.engfracmech.2020.107228
  • Wang, Y., Chan, C. L., Leong, S. H., & Zhang, M. Z. (2020). Engineering properties of strain hardening geopolymer composites with hybrid polyvinyl alcohol and recycled steel fibres. Construction and Building Materials, 261, 120585. https://doi.org/10.1016/j.conbuildmat.2020.120585
  • Yolcu, A., Karakoc, M. B., Ekinci, E., Ozcan, A., & Sagir, M. A. (2022). Effect of binder dosage and the use of waste rubber fiber on the mechanical and durability performance of geopolymer concrete. Journal of Building Engineering, 61, 105162. https://doi.org/10.1016/j.jobe.2022.105162
  • Zhang, P., Wang, J., Li, Q. F., Wan, J. Y., & Ling, Y. F. (2021). Mechanical and fracture properties of steel fiber-reinforced geopolymer concrete. Science and Engineering of Composite Materials, 28(1), 299-313. https://doi.org/10.1515/secm-2021-0030
  • Zhong, H., Poon, E. W., Chen, K., & Zhang, M. Z. (2019). Engineering properties of crumb rubber alkali-activated mortar reinforced with recycled steel fibres. Journal of Cleaner Production, 238, 117950. https://doi.org/10.1016/j.jclepro.2019.117950
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kırılma Mekaniği, Yapı Malzemeleri
Bölüm İnşaat Mühendisliği
Yazarlar

Muhammed Gümüş 0000-0002-7380-0098

Hakan Bayrak 0000-0001-9441-2214

Yayımlanma Tarihi 3 Mart 2024
Gönderilme Tarihi 12 Ekim 2023
Kabul Tarihi 8 Kasım 2023
Yayımlandığı Sayı Yıl 2024Cilt: 27 Sayı: 1

Kaynak Göster

APA Gümüş, M., & Bayrak, H. (2024). MIXED MODE FRACTURE OF THE GEOPOLYMER COMPOSITES REINFORCED WITH RECYCLED STEEL FIBERS. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(1), 232-242. https://doi.org/10.17780/ksujes.1375088