Araştırma Makalesi
BibTex RIS Kaynak Göster

REMOVAL OF VETERINARY ANTIBIOTICS BY USING LAYERED DOUBLE HYDROXIDE PHOTOCATALYSTS: EFFECTS OF REACTION PARAMETERS AND KINETIC MODELLING

Yıl 2024, Cilt: 27 Sayı: 3, 804 - 820, 03.09.2024
https://doi.org/10.17780/ksujes.1425244

Öz

The photocatalytic performances of Ni-Fe-LDH, Co-Fe-LDH, and Cu-Fe-LDH, (LDH: Layered Double Hydroxide) were investigated for the removal of oxytetracycline hydrochloride (OTC-HCl) from water. Layered double hydroxide materials were synthesized by using the co-precipitation method. The photocatalysts were characterized by SEM, XRD, XPS, and BET surface area analyses. The highest pharmaceutical removal efficiency was obtained by using Ni-Fe-LDH photocatalyst. Box-Behnken design was used to examine the influences of reaction parameters on OTC-HCl removal and to determine the optimal reaction conditions. In the parametric study, the interactive influences of photocatalyst loading, solution pH, and the initial oxidant concentration on oxytetracycline hydrochloride removal were investigated. Under visible light irradiation, the optimal conditions were determined to be 1.5 g/L catalyst loading, pH 5, and 1.48 mM H2O2 concentration by using Ni-Fe-LDH photocatalyst. OTC-HCl degradation was calculated as 67.1% under the optimal conditions. Hydroxyl radical was determined to be the main effective reactive. Phytotoxicity tests were performed using Lepidium sativum seeds. Veterinary antibiotic degradation fit to first order reaction. The Arrhenius constant and activation energy were evaluated as 2.6 min-1 and 14.21 kJ/mol, respectively.

Destekleyen Kurum

Ege Üniversitesi

Proje Numarası

FYL-2020-22394

Teşekkür

This study was supported by Ege University Scientific Research Project Fund [FYL-2020-22394].

Kaynakça

  • Adeyemi, J. O., Ajiboye, T., & Onwudiwe, D. C. (2021). Mineralization of Antibiotics in Wastewater Via Photocatalysis. Water, Air, & Soil Pollution, 232(5), 219. https://doi.org/10.1007/s11270-021-05167-3
  • Anantharaj, S., Karthick, K., Venkatesh, M., Simha, T. V. S. V., Salunke, A. S., Ma, L., … Kundu, S. (2017). Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces. Nano Energy, 39(June), 30–43. https://doi.org/10.1016/j.nanoen.2017.06.027
  • Ao, X., Sun, W., Li, S., Yang, C., Li, C., & Lu, Z. (2019). Degradation of tetracycline by medium pressure UV-activated peroxymonosulfate process: Influencing factors, degradation pathways, and toxicity evaluation. Chemical Engineering Journal, 361, 1053–1062. https://doi.org/10.1016/j.cej.2018.12.133
  • Arif, M., Yasin, G., Shakeel, M., Mushtaq, M. A., Ye, W., Fang, X., … Yan, D. (2019). Hierarchical CoFe-layered double hydroxide and g-C3N4 heterostructures with enhanced bifunctional photo/electrocatalytic activity towards overall water splitting. Materials Chemistry Frontiers, 3(3), 520–531. https://doi.org/10.1039/C8QM00677F
  • Arshadi, M., Abdolmaleki, M. K., Mousavinia, F., Khalafi-Nezhad, A., Firouzabadi, H., & Gil, A. (2016). Degradation of methyl orange by heterogeneous Fenton-like oxidation on a nano-organometallic compound in the presence of multi-walled carbon nanotubes. Chemical Engineering Research and Design, 112, 113–121. https://doi.org/10.1016/j.cherd.2016.05.028
  • Bagherzadeh, S. B., Kazemeini, M., & Mahmoodi, N. M. (2021). Preparation of novel and highly active magnetic ternary structures (metal-organic framework/cobalt ferrite/graphene oxide) for effective visible-light-driven photocatalytic and photo-Fenton-like degradation of organic contaminants. Journal of Colloid and Interface Science, 602, 73–94. https://doi.org/10.1016/j.jcis.2021.05.181
  • Chauhan, R., Dinesh, G. K., Alawa, B., & Chakma, S. (2021). A critical analysis of sono-hybrid advanced oxidation process of ferrioxalate system for degradation of recalcitrant pollutants. Chemosphere, 277, 130324. https://doi.org/10.1016/j.chemosphere.2021.130324
  • Chen, C. R., Zeng, H. Y., Yi, M. Y., Xiao, G. F., Zhu, R. L., Cao, X. J., … Peng, J. W. (2019). Fabrication of Ag2O/Ag decorated ZnAl-layered double hydroxide with enhanced visible light photocatalytic activity for tetracycline degradation. Ecotoxicology and Environmental Safety, 172(February), 423–431. https://doi.org/10.1016/j.ecoenv.2019.01.080
  • Chen, F., Yang, Q., Sun, J., Yao, F., Wang, S., Wang, Y., … Zeng, G. (2016). Enhanced Photocatalytic Degradation of Tetracycline by AgI/BiVO4 Heterojunction under Visible-Light Irradiation: Mineralization Efficiency and Mechanism. ACS Applied Materials & Interfaces, 8(48), 32887–32900. https://doi.org/10.1021/acsami.6b12278
  • Chen, J., Zheng, F., Zhang, S. J., Fisher, A., Zhou, Y., Wang, Z., … Sun, S. G. (2018). Interfacial Interaction between FeOOH and Ni-Fe LDH to Modulate the Local Electronic Structure for Enhanced OER Electrocatalysis. ACS Catalysis, 8(12), 11342–11351. https://doi.org/10.1021/acscatal.8b03489
  • Done, H. Y., Venkatesan, A. K., & Halden, R. U. (2015). Does the Recent Growth of Aquaculture Create Antibiotic Resistance Threats Different from those Associated with Land Animal Production in Agriculture? AAPS Journal, 17(3), 513–524. https://doi.org/10.1208/s12248-015-9722-z
  • Fan, H., Zhu, J., Sun, J., Zhang, S., & Ai, S. (2013). Ag/AgBr/Co-Ni-NO3 Layered Double Hydroxide Nanocomposites with Highly Adsorptive and Photocatalytic Properties. Chemistry - A European Journal, 19(7), 2523–2530. https://doi.org/10.1002/chem.201203408
  • Feng, Q., Zhou, J., Luo, W., Ding, L., & Cai, W. (2020). Photo-Fenton removal of tetracycline hydrochloride using LaFeO3 as a persulfate activator under visible light. Ecotoxicology and Environmental Safety, 198(April), 110661. https://doi.org/10.1016/j.ecoenv.2020.110661
  • Feng, X., Shi, Y., Shi, J., Hao, L., & Hu, Z. (2021). Superhydrophilic 3D peony flower-like Mo-doped Ni2S3@NiFe LDH heterostructure electrocatalyst for accelerating water splitting. International Journal of Hydrogen Energy, 46(7), 5169–5180. https://doi.org/10.1016/j.ijhydene.2020.11.018
  • Gholami, P., Khataee, A., Soltani, R. D. C., Dinpazhoh, L., & Bhatnagar, A. (2020). Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@biochar nanocomposite. Journal of Hazardous Materials, 382, 121070. https://doi.org/10.1016/j.jhazmat.2019.121070
  • Gothwal, R., & Shashidhar, T. (2015). Antibiotic Pollution in the Environment: A Review. CLEAN – Soil, Air, Water, 43(4), 479–489. https://doi.org/10.1002/clen.201300989
  • Gupta, A. D., Singh, H., Varjani, S., Awasthi, M. K., Giri, B. S., & Pandey, A. (2022). A critical review on biochar-based catalysts for the abatement of toxic pollutants from water via advanced oxidation processes (AOPs). Science of the Total Environment, 849(June), 157831. https://doi.org/10.1016/j.scitotenv.2022.157831
  • Haag, W. R., & David Yao, C. C. (1992). Rate Constants for Reaction of Hydroxyl Radicals with Several Drinking Water Contaminants. Environmental Science and Technology, 26(5), 1005–1013. https://doi.org/10.1021/es00029a021
  • Hoekstra, N. J., Bosker, T., & Lantinga, E. A. (2002). Effects of cattle dung from farms with different feeding strategies on germination and initial root growth of cress (Lepidium sativum L.). Agriculture, Ecosystems and Environment, 93(1–3), 189–196. https://doi.org/10.1016/S0167-8809(01)00348-6
  • Kang, N., Xu, D., & Shi, W. (2019). Synthesis plasmonic Bi/BiVO4 photocatalysts with enhanced photocatalytic activity for degradation of tetracycline (TC). Chinese Journal of Chemical Engineering, 27(12), 3053–3059. https://doi.org/10.1016/j.cjche.2019.05.008
  • Kasiri, M. B., Aleboyeh, H., & Aleboyeh, A. (2008). Degradation of Acid Blue 74 using Fe-ZSM5 zeolite as a heterogeneous photo-Fenton catalyst. Applied Catalysis B: Environmental, 84(1–2), 9–15. https://doi.org/10.1016/j.apcatb.2008.02.024
  • Kerchich, S., Boudjemaa, A., Chebout, R., Bachari, K., & Mameri, N. (2021). High performance of δ-Fe2O3 novel photo-catalyst supported on LDH structure. Journal of Photochemistry and Photobiology A: Chemistry, 406, 113001. https://doi.org/10.1016/j.jphotochem.2020.113001
  • Khataee, A., Sadeghi Rad, T., Nikzat, S., Hassani, A., Aslan, M. H., Kobya, M., & Demirbaş, E. (2019). Fabrication of NiFe layered double hydroxide/reduced graphene oxide (NiFe-LDH/rGO) nanocomposite with enhanced sonophotocatalytic activity for the degradation of moxifloxacin. Chemical Engineering Journal, 375(June), 122102. https://doi.org/10.1016/j.cej.2019.122102
  • Leavey-Roback, S. L., Krasner, S. W., & Suffet, I. M. H. (2016). Veterinary antibiotics used in animal agriculture as NDMA precursors. Chemosphere, 164, 330–338. https://doi.org/10.1016/j.chemosphere.2016.08.070
  • Li, C., Sun, Z., Zhang, W., Yu, C., & Zheng, S. (2018). Highly efficient g-C3N4/TiO2/kaolinite composite with novel three-dimensional structure and enhanced visible light responding ability towards ciprofloxacin and S. aureus. Applied Catalysis B: Environmental, 220, 272–282. https://doi.org/10.1016/j.apcatb.2017.08.044
  • Li, F., & Duan, X. (2005). Applications of Layered Double Hydroxides. In Layered Double Hydroxides (pp. 193–223). Berlin/Heidelberg: Springer-Verlag. https://doi.org/10.1007/430_007
  • Li, S., & Hu, J. (2016). Photolytic and photocatalytic degradation of tetracycline: Effect of humic acid on degradation kinetics and mechanisms. Journal of Hazardous Materials, 318(June), 134–144. https://doi.org/10.1016/j.jhazmat.2016.05.100
  • Lin, L., Wang, H., Jiang, W., Mkaouar, A. R., & Xu, P. (2017). Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers. Journal of Hazardous Materials, 333, 162–168. https://doi.org/10.1016/j.jhazmat.2017.02.044
  • Liu, B., Wu, Y., Zhang, J., Han, X., & Shi, H. (2019). Visible-light-driven g-C3N4/Cu2O heterostructures with efficient photocatalytic activities for tetracycline degradation and microbial inactivation. Journal of Photochemistry and Photobiology A: Chemistry, 378(April), 1–8. https://doi.org/10.1016/j.jphotochem.2019.04.007
  • Liu, L., Li, S., An, Y., Sun, X., Wu, H., Li, J., … Li, H. (2019). Hybridization of Nanodiamond and CuFe-LDH as Heterogeneous Photoactivator for Visible-Light Driven Photo-Fenton Reaction: Photocatalytic Activity and Mechanism. Catalysts, 9(2), 118. https://doi.org/10.3390/catal9020118
  • Lu, C., Wang, J., Cao, D., Guo, F., Hao, X., Li, D., & Shi, W. (2023). Synthesis of magnetically recyclable g-C3N4/NiFe2O4 S-scheme heterojunction photocatalyst with promoted visible-light-response photo-Fenton degradation of tetracycline. Materials Research Bulletin, 158, 112064. https://doi.org/10.1016/j.materresbull.2022.112064
  • Luo, B., Xu, D., Li, D., Wu, G., Wu, M., Shi, W., & Chen, M. (2015). Fabrication of a Ag/Bi3TaO7 Plasmonic Photocatalyst with Enhanced Photocatalytic Activity for Degradation of Tetracycline. ACS Applied Materials & Interfaces, 7(31), 17061–17069. https://doi.org/10.1021/acsami.5b03535
  • Mandal, S., Mayadevi, S., & Kulkarni, B. D. (2009). Adsorption of aqueous selenite [Se(IV)] species on synthetic layered double Hydroxide Materials. Industrial and Engineering Chemistry Research, 48(17), 7893–7898. https://doi.org/10.1021/ie900136s
  • Mauraya, A. K., Mahana, D., Jhaa, G., Pradhan, B. K., Roopa, Tomer, S., … Muthusamy, S. K. (2022). Heterostructure nanoarchitectonics with ZnO/SnO2 for ultrafast and selective detection of CO gas at low ppm levels. Ceramics International, 48(24), 36556–36569. https://doi.org/10.1016/j.ceramint.2022.08.215
  • Michael, I., Rizzo, L., McArdell, C. S., Manaia, C. M., Merlin, C., Schwartz, T., … Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Research, 47(3), 957–995. https://doi.org/10.1016/j.watres.2012.11.027
  • Mikami, G., Grosu, F., Kawamura, S., Yoshida, Y., Carja, G., & Izumi, Y. (2016). Harnessing self-supported Au nanoparticles on layered double hydroxides comprising Zn and Al for enhanced phenol decomposition under solar light. Applied Catalysis B: Environmental, 199, 260–271. https://doi.org/10.1016/j.apcatb.2016.06.031
  • Ngigi, A. N., Magu, M. M., & Muendo, B. M. (2020). Occurrence of antibiotics residues in hospital wastewater, wastewater treatment plant, and in surface water in Nairobi County, Kenya. Environmental Monitoring and Assessment, 192(1), 18. https://doi.org/10.1007/s10661-019-7952-8
  • Palanivel, B., Shkir, M., Alshahrani, T., & Mani, A. (2021). Novel NiFe2O4 deposited S-doped g-C3N4 nanorod: Visible-light-driven heterojunction for photo-Fenton like tetracycline degradation. Diamond and Related Materials, 112, 108148. https://doi.org/10.1016/j.diamond.2020.108148
  • Palas, B., Ersöz, G., & Atalay, S. (2019). Bioinspired metal oxide particles as efficient wet air oxidation and photocatalytic oxidation catalysts for the degradation of acetaminophen in aqueous phase. Ecotoxicology and Environmental Safety, 182, 109367. https://doi.org/10.1016/j.ecoenv.2019.109367
  • Panplado, K., Subsadsana, M., Srijaranai, S., & Sansuk, S. (2019). Rapid Removal and Efficient Recovery of Tetracycline Antibiotics in Aqueous Solution Using Layered Double Hydroxide Components in an In Situ-Adsorption Process. Crystals, 9(7), 342. https://doi.org/10.3390/cryst9070342
  • Papa, E., & Gramatica, P. (2008). Screening of persistent organic pollutants by QSPR classification models: A comparative study. Journal of Molecular Graphics and Modelling, 27(1), 59–65. https://doi.org/10.1016/j.jmgm.2008.02.004
  • Ren, L., Wang, C., Li, W., Dong, R., Sun, H., Liu, N., & Geng, B. (2019). Heterostructural NiFe-LDH@Ni3S2 nanosheet arrays as an efficient electrocatalyst for overall water splitting. Electrochimica Acta, 318, 42–50. https://doi.org/10.1016/j.electacta.2019.06.060
  • Reyes, C., Fernández, J., Freer, J., Mondaca, M. A., Zaror, C., Malato, S., & Mansilla, H. D. (2006). Degradation and inactivation of tetracycline by TiO2 photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 184(1–2), 141–146. https://doi.org/10.1016/j.jphotochem.2006.04.007
  • Rokesh, K., Sakar, M., & Do, T.-O. (2021). Emerging Hybrid Nanocomposite Photocatalysts for the Degradation of Antibiotics: Insights into Their Designs and Mechanisms. Nanomaterials, 11(3), 572. https://doi.org/10.3390/nano11030572
  • Rosmini, C., Tsoncheva, T., Kovatcheva, D., Velinov, N., Kolev, H., Karashanova, D., … Lázaro, M. J. (2022). Mesoporous Ce–Fe–Ni nanocomposites encapsulated in carbon-nanofibers: Synthesis, characterization and catalytic behavior in oxygen evolution reaction. Carbon, 196(April), 186–202. https://doi.org/10.1016/j.carbon.2022.04.036
  • Rouquerol, F., Rouquerol, J., Sing, K. S. W., Maurin, G., & Llewellyn, P. (2014). Introduction. In Adsorption by Powders and Porous Solids: Principles, Methodology and Applications: Second Edition (pp. 1–24). Elsevier. https://doi.org/10.1016/B978-0-08-097035-6.00001-2
  • Sahoo, D. P., Patnaik, S., & Parida, K. (2019). Construction of a Z-Scheme Dictated WO3–X/Ag/ZnCr LDH Synergistically Visible Light-Induced Photocatalyst towards Tetracycline Degradation and H2 Evolution. ACS Omega, 4(12), 14721–14741. https://doi.org/10.1021/acsomega.9b01146
  • Samanidou, V. F., Nikolaidou, K. I., & Papadoyannis, I. N. (2007). Advances in chromatographic analysis of tetracyclines in foodstuffs of animal origin - A review. Separation and Purification Reviews, 36(1), 1–69. https://doi.org/10.1080/15422110600822758
  • Sarmah, A. K., Meyer, M. T., & Boxall, A. B. A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725–759. https://doi.org/10.1016/j.chemosphere.2006.03.026
  • Shi, W., Ren, H., Li, M., Shu, K., Xu, Y., Yan, C., & Tang, Y. (2020). Tetracycline removal from aqueous solution by visible-light-driven photocatalytic degradation with low cost red mud wastes. Chemical Engineering Journal, 382, 122876. https://doi.org/10.1016/j.cej.2019.122876
  • Shi, Z., Wang, Y., Sun, S., Zhang, C., & Wang, H. (2020). Removal of methylene blue from aqueous solution using Mg-Fe, Zn-Fe, Mn-Fe layered double hydroxide. Water Science and Technology, 81(12), 2522–2532. https://doi.org/10.2166/wst.2020.313
  • Sirisomboonchai, S., Li, S., Yoshida, A., Li, X., Samart, C., Abudula, A., & Guan, G. (2019). Fabrication of NiO Microflake@NiFe-LDH Nanosheet Heterostructure Electrocatalysts for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 7(2), 2327–2334. https://doi.org/10.1021/acssuschemeng.8b05088
  • Soltani, T., Tayyebi, A., & Lee, B. K. (2019). Photolysis and photocatalysis of tetracycline by sonochemically heterojunctioned BiVO4/reduced graphene oxide under visible-light irradiation. Journal of Environmental Management, 232(September 2017), 713–721. https://doi.org/10.1016/j.jenvman.2018.11.133
  • Song, C., Liu, Y., Wang, Y., Tang, S., Li, W., Li, Q., … Lei, Y. (2021). Highly efficient oxygen evolution and stable water splitting by coupling NiFe LDH with metal phosphides. Science China Materials, 64(7), 1662–1670. https://doi.org/10.1007/s40843-020-1566-6
  • Song, Z., Gao, H., Liao, G., Zhang, W., & Wang, D. (2022). A novel slag-based Ce/TiO2@LDH catalyst for visible light driven degradation of tetracycline: performance and mechanism. Journal of Alloys and Compounds, 901, 163525. https://doi.org/10.1016/j.jallcom.2021.163525
  • Tagliazucca, V., Schlichte, K., Schüth, F., & Weidenthaler, C. (2013). Molybdenum-based catalysts for the decomposition of ammonia: In situ X-ray diffraction studies, microstructure, and catalytic properties. Journal of Catalysis, 305, 277–289. https://doi.org/10.1016/j.jcat.2013.05.011
  • Thi, L. N., Phan, T. T. T., Ngoc, T. N., Viswanath, N. S. M., Le, H. T. T., Tran Thi, L., … Vo, V. (2022). Prussian Blue decorated g-C3N4 – From novel synthesis to insight study on charge transfer strategy for improving visible-light driven photo-Fenton catalytic activity. Journal of Alloys and Compounds, 916, 165331. https://doi.org/10.1016/j.jallcom.2022.165331
  • Utami, H. P., Ahmad, N., Zahara, Z. A., Lesbani, A., & Mohadi, R. (2022). Green Synthesis of Nickel Aluminum Layered Double Hydroxide using Chitosan as Template for Adsorption of Phenol. Science and Technology Indonesia, 7(4), 530–535. https://doi.org/10.26554/sti.2022.7.4.530-535
  • Wei, L., Li, Z., Ye, G., Rietveld, L. C., & van Halem, D. (2022). Comparative study of low-cost fluoride removal by layered double hydroxides, geopolymers, softening pellets and struvite. Environmental Technology (United Kingdom), 43(27), 4306–4314. https://doi.org/10.1080/09593330.2021.1946600
  • Wu, S., Hu, H., Lin, Y., Zhang, J., & Hu, Y. H. (2020). Visible light photocatalytic degradation of tetracycline over TiO2. Chemical Engineering Journal, 382, 122842. https://doi.org/10.1016/j.cej.2019.122842
  • Yan, J., Chen, Y., Qian, L., Gao, W., Ouyang, D., & Chen, M. (2017). Heterogeneously catalyzed persulfate with a CuMgFe layered double hydroxide for the degradation of ethylbenzene. Journal of Hazardous Materials, 338, 372–380. https://doi.org/10.1016/j.jhazmat.2017.05.007
  • Yang, L., Li, L., Liu, Z., Lai, C., Yang, X., Shi, X., … Tang, C. (2022). Degradation of tetracycline by FeNi-LDH/Ti3C2 photo-Fenton system in water: From performance to mechanism. Chemosphere, 294(November 2021), 133736. https://doi.org/10.1016/j.chemosphere.2022.133736
  • Yildirim-Tirgil, N., Lee, J., Cho, H., Lee, H., Somu, S., Busnaina, A., & Gu, A. Z. (2019). A SWCNT based aptasensor system for antibiotic oxytetracycline detection in water samples. Analytical Methods, 11(20), 2692–2699. https://doi.org/10.1039/c9ay00455f
  • Yuan, J., Zhou, H., Li, D., & Xu, F. (2023). Construction of Fe3S4/g-C3N4 composites as photo-Fenton-like catalysts to realize high-efficiency degradation of pollutants. Ceramics International. https://doi.org/10.1016/j.ceramint.2023.01.205
  • Zhou, H., Wang, S., Jiang, J., Shao, L., Li, D., Yuan, J., & Xu, F. (2022). Magnetic Fe3S4/MoS2 with visible-light response as an efficient photo-Fenton-like catalyst: Validation in degrading tetracycline hydrochloride under mild pH conditions. Journal of Alloys and Compounds, 921, 166023. https://doi.org/10.1016/j.jallcom.2022.166023
  • Zhu, Z., Yang, R., Zhu, C., Hu, C., & Liu, B. (2021). Novel Cu-Fe/LDH@BiOI1.5 photocatalyst effectively degrades tetracycline under visible light irradiation. Advanced Powder Technology, 32(7), 2311–2321. https://doi.org/10.1016/j.apt.2021.05.008

TABAKALI ÇİFT HİDROKSİT FOTOKATALİZÖRLER KULLANARAK VETERİNER ANTİBİYOTİKLERİN GİDERİMİ: REAKSİYON PARAMETRELERİNİN ETKİLERİ VE KİNETİK MODELLEME

Yıl 2024, Cilt: 27 Sayı: 3, 804 - 820, 03.09.2024
https://doi.org/10.17780/ksujes.1425244

Öz

Oksitetrasiklin hidroklorik asidin (OTC-HCl) sudan uzaklaştırılması için Ni-Fe-TÇH, Co-Fe-TÇH ve Cu-Fe-TÇH'nin (TÇH: Tabakalı Çift Hidroksit) fotokatalitik performansları araştırılmıştır. Tabakalı çift hidroksit malzemeler kopresipitasyon yöntemi kullanılarak sentezlenmiştir. Fotokatalizörler SEM, XRD, XPS ve BET yüzey alanı analizleri ile karakterize edilmiştir. En yüksek farmasötik giderim değeri, Ni-Fe-TÇH fotokatalizörünün varlığında elde edilmiştir. Reaksiyon parametrelerinin OTC-HCl giderimi üzerindeki etkilerini araştırmak ve optimum reaksiyon koşullarını belirlemek için Box Behnken tasarımı kullanılmıştır. Parametrik çalışmada fotokatalizör dozu, çözelti pH değeri ve başlangıç oksidan derişiminin oksitetrasiklin hidroklorik asit giderimi üzerine interaktif etkileri incelenmiştir. Ni-Fe-TÇH fotokatalizör kullanılarak görünür ışık altında optimum reaksiyon koşulları 1,5 g/L fotokatalizör dozu, 1,48 mM H2O2 konsantrasyonu ve pH 5 olarak belirlenmiştir. Optimum koşullar altında OTC-HCl giderimi %67,1 olarak hesaplanmıştır. Radikal tuzaklama deneylerinde hidroksil radikalinin başlıca etkili reaktif tür olduğu tespit edilmiştir. Lepidium sativum tohumları kullanılarak fitotoksisite testleri gerçekleştitlmiştir. Kinetik çalışmalarda veteriner antibiyotik bozunmasının birinci dereceden reaksiyon hız modeline uyduğu sonucuna varılmıştır. Aktivasyon enerjisi 14,21 kJ/mol ve ön üstel faktör 2,6 min-1 olarak hesaplanmıştır.

Destekleyen Kurum

Ege Üniversitesi

Proje Numarası

FYL-2020-22394

Teşekkür

This study was supported by Ege University Scientific Research Project Fund [FYL-2020-22394].

Kaynakça

  • Adeyemi, J. O., Ajiboye, T., & Onwudiwe, D. C. (2021). Mineralization of Antibiotics in Wastewater Via Photocatalysis. Water, Air, & Soil Pollution, 232(5), 219. https://doi.org/10.1007/s11270-021-05167-3
  • Anantharaj, S., Karthick, K., Venkatesh, M., Simha, T. V. S. V., Salunke, A. S., Ma, L., … Kundu, S. (2017). Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces. Nano Energy, 39(June), 30–43. https://doi.org/10.1016/j.nanoen.2017.06.027
  • Ao, X., Sun, W., Li, S., Yang, C., Li, C., & Lu, Z. (2019). Degradation of tetracycline by medium pressure UV-activated peroxymonosulfate process: Influencing factors, degradation pathways, and toxicity evaluation. Chemical Engineering Journal, 361, 1053–1062. https://doi.org/10.1016/j.cej.2018.12.133
  • Arif, M., Yasin, G., Shakeel, M., Mushtaq, M. A., Ye, W., Fang, X., … Yan, D. (2019). Hierarchical CoFe-layered double hydroxide and g-C3N4 heterostructures with enhanced bifunctional photo/electrocatalytic activity towards overall water splitting. Materials Chemistry Frontiers, 3(3), 520–531. https://doi.org/10.1039/C8QM00677F
  • Arshadi, M., Abdolmaleki, M. K., Mousavinia, F., Khalafi-Nezhad, A., Firouzabadi, H., & Gil, A. (2016). Degradation of methyl orange by heterogeneous Fenton-like oxidation on a nano-organometallic compound in the presence of multi-walled carbon nanotubes. Chemical Engineering Research and Design, 112, 113–121. https://doi.org/10.1016/j.cherd.2016.05.028
  • Bagherzadeh, S. B., Kazemeini, M., & Mahmoodi, N. M. (2021). Preparation of novel and highly active magnetic ternary structures (metal-organic framework/cobalt ferrite/graphene oxide) for effective visible-light-driven photocatalytic and photo-Fenton-like degradation of organic contaminants. Journal of Colloid and Interface Science, 602, 73–94. https://doi.org/10.1016/j.jcis.2021.05.181
  • Chauhan, R., Dinesh, G. K., Alawa, B., & Chakma, S. (2021). A critical analysis of sono-hybrid advanced oxidation process of ferrioxalate system for degradation of recalcitrant pollutants. Chemosphere, 277, 130324. https://doi.org/10.1016/j.chemosphere.2021.130324
  • Chen, C. R., Zeng, H. Y., Yi, M. Y., Xiao, G. F., Zhu, R. L., Cao, X. J., … Peng, J. W. (2019). Fabrication of Ag2O/Ag decorated ZnAl-layered double hydroxide with enhanced visible light photocatalytic activity for tetracycline degradation. Ecotoxicology and Environmental Safety, 172(February), 423–431. https://doi.org/10.1016/j.ecoenv.2019.01.080
  • Chen, F., Yang, Q., Sun, J., Yao, F., Wang, S., Wang, Y., … Zeng, G. (2016). Enhanced Photocatalytic Degradation of Tetracycline by AgI/BiVO4 Heterojunction under Visible-Light Irradiation: Mineralization Efficiency and Mechanism. ACS Applied Materials & Interfaces, 8(48), 32887–32900. https://doi.org/10.1021/acsami.6b12278
  • Chen, J., Zheng, F., Zhang, S. J., Fisher, A., Zhou, Y., Wang, Z., … Sun, S. G. (2018). Interfacial Interaction between FeOOH and Ni-Fe LDH to Modulate the Local Electronic Structure for Enhanced OER Electrocatalysis. ACS Catalysis, 8(12), 11342–11351. https://doi.org/10.1021/acscatal.8b03489
  • Done, H. Y., Venkatesan, A. K., & Halden, R. U. (2015). Does the Recent Growth of Aquaculture Create Antibiotic Resistance Threats Different from those Associated with Land Animal Production in Agriculture? AAPS Journal, 17(3), 513–524. https://doi.org/10.1208/s12248-015-9722-z
  • Fan, H., Zhu, J., Sun, J., Zhang, S., & Ai, S. (2013). Ag/AgBr/Co-Ni-NO3 Layered Double Hydroxide Nanocomposites with Highly Adsorptive and Photocatalytic Properties. Chemistry - A European Journal, 19(7), 2523–2530. https://doi.org/10.1002/chem.201203408
  • Feng, Q., Zhou, J., Luo, W., Ding, L., & Cai, W. (2020). Photo-Fenton removal of tetracycline hydrochloride using LaFeO3 as a persulfate activator under visible light. Ecotoxicology and Environmental Safety, 198(April), 110661. https://doi.org/10.1016/j.ecoenv.2020.110661
  • Feng, X., Shi, Y., Shi, J., Hao, L., & Hu, Z. (2021). Superhydrophilic 3D peony flower-like Mo-doped Ni2S3@NiFe LDH heterostructure electrocatalyst for accelerating water splitting. International Journal of Hydrogen Energy, 46(7), 5169–5180. https://doi.org/10.1016/j.ijhydene.2020.11.018
  • Gholami, P., Khataee, A., Soltani, R. D. C., Dinpazhoh, L., & Bhatnagar, A. (2020). Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@biochar nanocomposite. Journal of Hazardous Materials, 382, 121070. https://doi.org/10.1016/j.jhazmat.2019.121070
  • Gothwal, R., & Shashidhar, T. (2015). Antibiotic Pollution in the Environment: A Review. CLEAN – Soil, Air, Water, 43(4), 479–489. https://doi.org/10.1002/clen.201300989
  • Gupta, A. D., Singh, H., Varjani, S., Awasthi, M. K., Giri, B. S., & Pandey, A. (2022). A critical review on biochar-based catalysts for the abatement of toxic pollutants from water via advanced oxidation processes (AOPs). Science of the Total Environment, 849(June), 157831. https://doi.org/10.1016/j.scitotenv.2022.157831
  • Haag, W. R., & David Yao, C. C. (1992). Rate Constants for Reaction of Hydroxyl Radicals with Several Drinking Water Contaminants. Environmental Science and Technology, 26(5), 1005–1013. https://doi.org/10.1021/es00029a021
  • Hoekstra, N. J., Bosker, T., & Lantinga, E. A. (2002). Effects of cattle dung from farms with different feeding strategies on germination and initial root growth of cress (Lepidium sativum L.). Agriculture, Ecosystems and Environment, 93(1–3), 189–196. https://doi.org/10.1016/S0167-8809(01)00348-6
  • Kang, N., Xu, D., & Shi, W. (2019). Synthesis plasmonic Bi/BiVO4 photocatalysts with enhanced photocatalytic activity for degradation of tetracycline (TC). Chinese Journal of Chemical Engineering, 27(12), 3053–3059. https://doi.org/10.1016/j.cjche.2019.05.008
  • Kasiri, M. B., Aleboyeh, H., & Aleboyeh, A. (2008). Degradation of Acid Blue 74 using Fe-ZSM5 zeolite as a heterogeneous photo-Fenton catalyst. Applied Catalysis B: Environmental, 84(1–2), 9–15. https://doi.org/10.1016/j.apcatb.2008.02.024
  • Kerchich, S., Boudjemaa, A., Chebout, R., Bachari, K., & Mameri, N. (2021). High performance of δ-Fe2O3 novel photo-catalyst supported on LDH structure. Journal of Photochemistry and Photobiology A: Chemistry, 406, 113001. https://doi.org/10.1016/j.jphotochem.2020.113001
  • Khataee, A., Sadeghi Rad, T., Nikzat, S., Hassani, A., Aslan, M. H., Kobya, M., & Demirbaş, E. (2019). Fabrication of NiFe layered double hydroxide/reduced graphene oxide (NiFe-LDH/rGO) nanocomposite with enhanced sonophotocatalytic activity for the degradation of moxifloxacin. Chemical Engineering Journal, 375(June), 122102. https://doi.org/10.1016/j.cej.2019.122102
  • Leavey-Roback, S. L., Krasner, S. W., & Suffet, I. M. H. (2016). Veterinary antibiotics used in animal agriculture as NDMA precursors. Chemosphere, 164, 330–338. https://doi.org/10.1016/j.chemosphere.2016.08.070
  • Li, C., Sun, Z., Zhang, W., Yu, C., & Zheng, S. (2018). Highly efficient g-C3N4/TiO2/kaolinite composite with novel three-dimensional structure and enhanced visible light responding ability towards ciprofloxacin and S. aureus. Applied Catalysis B: Environmental, 220, 272–282. https://doi.org/10.1016/j.apcatb.2017.08.044
  • Li, F., & Duan, X. (2005). Applications of Layered Double Hydroxides. In Layered Double Hydroxides (pp. 193–223). Berlin/Heidelberg: Springer-Verlag. https://doi.org/10.1007/430_007
  • Li, S., & Hu, J. (2016). Photolytic and photocatalytic degradation of tetracycline: Effect of humic acid on degradation kinetics and mechanisms. Journal of Hazardous Materials, 318(June), 134–144. https://doi.org/10.1016/j.jhazmat.2016.05.100
  • Lin, L., Wang, H., Jiang, W., Mkaouar, A. R., & Xu, P. (2017). Comparison study on photocatalytic oxidation of pharmaceuticals by TiO2-Fe and TiO2-reduced graphene oxide nanocomposites immobilized on optical fibers. Journal of Hazardous Materials, 333, 162–168. https://doi.org/10.1016/j.jhazmat.2017.02.044
  • Liu, B., Wu, Y., Zhang, J., Han, X., & Shi, H. (2019). Visible-light-driven g-C3N4/Cu2O heterostructures with efficient photocatalytic activities for tetracycline degradation and microbial inactivation. Journal of Photochemistry and Photobiology A: Chemistry, 378(April), 1–8. https://doi.org/10.1016/j.jphotochem.2019.04.007
  • Liu, L., Li, S., An, Y., Sun, X., Wu, H., Li, J., … Li, H. (2019). Hybridization of Nanodiamond and CuFe-LDH as Heterogeneous Photoactivator for Visible-Light Driven Photo-Fenton Reaction: Photocatalytic Activity and Mechanism. Catalysts, 9(2), 118. https://doi.org/10.3390/catal9020118
  • Lu, C., Wang, J., Cao, D., Guo, F., Hao, X., Li, D., & Shi, W. (2023). Synthesis of magnetically recyclable g-C3N4/NiFe2O4 S-scheme heterojunction photocatalyst with promoted visible-light-response photo-Fenton degradation of tetracycline. Materials Research Bulletin, 158, 112064. https://doi.org/10.1016/j.materresbull.2022.112064
  • Luo, B., Xu, D., Li, D., Wu, G., Wu, M., Shi, W., & Chen, M. (2015). Fabrication of a Ag/Bi3TaO7 Plasmonic Photocatalyst with Enhanced Photocatalytic Activity for Degradation of Tetracycline. ACS Applied Materials & Interfaces, 7(31), 17061–17069. https://doi.org/10.1021/acsami.5b03535
  • Mandal, S., Mayadevi, S., & Kulkarni, B. D. (2009). Adsorption of aqueous selenite [Se(IV)] species on synthetic layered double Hydroxide Materials. Industrial and Engineering Chemistry Research, 48(17), 7893–7898. https://doi.org/10.1021/ie900136s
  • Mauraya, A. K., Mahana, D., Jhaa, G., Pradhan, B. K., Roopa, Tomer, S., … Muthusamy, S. K. (2022). Heterostructure nanoarchitectonics with ZnO/SnO2 for ultrafast and selective detection of CO gas at low ppm levels. Ceramics International, 48(24), 36556–36569. https://doi.org/10.1016/j.ceramint.2022.08.215
  • Michael, I., Rizzo, L., McArdell, C. S., Manaia, C. M., Merlin, C., Schwartz, T., … Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Research, 47(3), 957–995. https://doi.org/10.1016/j.watres.2012.11.027
  • Mikami, G., Grosu, F., Kawamura, S., Yoshida, Y., Carja, G., & Izumi, Y. (2016). Harnessing self-supported Au nanoparticles on layered double hydroxides comprising Zn and Al for enhanced phenol decomposition under solar light. Applied Catalysis B: Environmental, 199, 260–271. https://doi.org/10.1016/j.apcatb.2016.06.031
  • Ngigi, A. N., Magu, M. M., & Muendo, B. M. (2020). Occurrence of antibiotics residues in hospital wastewater, wastewater treatment plant, and in surface water in Nairobi County, Kenya. Environmental Monitoring and Assessment, 192(1), 18. https://doi.org/10.1007/s10661-019-7952-8
  • Palanivel, B., Shkir, M., Alshahrani, T., & Mani, A. (2021). Novel NiFe2O4 deposited S-doped g-C3N4 nanorod: Visible-light-driven heterojunction for photo-Fenton like tetracycline degradation. Diamond and Related Materials, 112, 108148. https://doi.org/10.1016/j.diamond.2020.108148
  • Palas, B., Ersöz, G., & Atalay, S. (2019). Bioinspired metal oxide particles as efficient wet air oxidation and photocatalytic oxidation catalysts for the degradation of acetaminophen in aqueous phase. Ecotoxicology and Environmental Safety, 182, 109367. https://doi.org/10.1016/j.ecoenv.2019.109367
  • Panplado, K., Subsadsana, M., Srijaranai, S., & Sansuk, S. (2019). Rapid Removal and Efficient Recovery of Tetracycline Antibiotics in Aqueous Solution Using Layered Double Hydroxide Components in an In Situ-Adsorption Process. Crystals, 9(7), 342. https://doi.org/10.3390/cryst9070342
  • Papa, E., & Gramatica, P. (2008). Screening of persistent organic pollutants by QSPR classification models: A comparative study. Journal of Molecular Graphics and Modelling, 27(1), 59–65. https://doi.org/10.1016/j.jmgm.2008.02.004
  • Ren, L., Wang, C., Li, W., Dong, R., Sun, H., Liu, N., & Geng, B. (2019). Heterostructural NiFe-LDH@Ni3S2 nanosheet arrays as an efficient electrocatalyst for overall water splitting. Electrochimica Acta, 318, 42–50. https://doi.org/10.1016/j.electacta.2019.06.060
  • Reyes, C., Fernández, J., Freer, J., Mondaca, M. A., Zaror, C., Malato, S., & Mansilla, H. D. (2006). Degradation and inactivation of tetracycline by TiO2 photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 184(1–2), 141–146. https://doi.org/10.1016/j.jphotochem.2006.04.007
  • Rokesh, K., Sakar, M., & Do, T.-O. (2021). Emerging Hybrid Nanocomposite Photocatalysts for the Degradation of Antibiotics: Insights into Their Designs and Mechanisms. Nanomaterials, 11(3), 572. https://doi.org/10.3390/nano11030572
  • Rosmini, C., Tsoncheva, T., Kovatcheva, D., Velinov, N., Kolev, H., Karashanova, D., … Lázaro, M. J. (2022). Mesoporous Ce–Fe–Ni nanocomposites encapsulated in carbon-nanofibers: Synthesis, characterization and catalytic behavior in oxygen evolution reaction. Carbon, 196(April), 186–202. https://doi.org/10.1016/j.carbon.2022.04.036
  • Rouquerol, F., Rouquerol, J., Sing, K. S. W., Maurin, G., & Llewellyn, P. (2014). Introduction. In Adsorption by Powders and Porous Solids: Principles, Methodology and Applications: Second Edition (pp. 1–24). Elsevier. https://doi.org/10.1016/B978-0-08-097035-6.00001-2
  • Sahoo, D. P., Patnaik, S., & Parida, K. (2019). Construction of a Z-Scheme Dictated WO3–X/Ag/ZnCr LDH Synergistically Visible Light-Induced Photocatalyst towards Tetracycline Degradation and H2 Evolution. ACS Omega, 4(12), 14721–14741. https://doi.org/10.1021/acsomega.9b01146
  • Samanidou, V. F., Nikolaidou, K. I., & Papadoyannis, I. N. (2007). Advances in chromatographic analysis of tetracyclines in foodstuffs of animal origin - A review. Separation and Purification Reviews, 36(1), 1–69. https://doi.org/10.1080/15422110600822758
  • Sarmah, A. K., Meyer, M. T., & Boxall, A. B. A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725–759. https://doi.org/10.1016/j.chemosphere.2006.03.026
  • Shi, W., Ren, H., Li, M., Shu, K., Xu, Y., Yan, C., & Tang, Y. (2020). Tetracycline removal from aqueous solution by visible-light-driven photocatalytic degradation with low cost red mud wastes. Chemical Engineering Journal, 382, 122876. https://doi.org/10.1016/j.cej.2019.122876
  • Shi, Z., Wang, Y., Sun, S., Zhang, C., & Wang, H. (2020). Removal of methylene blue from aqueous solution using Mg-Fe, Zn-Fe, Mn-Fe layered double hydroxide. Water Science and Technology, 81(12), 2522–2532. https://doi.org/10.2166/wst.2020.313
  • Sirisomboonchai, S., Li, S., Yoshida, A., Li, X., Samart, C., Abudula, A., & Guan, G. (2019). Fabrication of NiO Microflake@NiFe-LDH Nanosheet Heterostructure Electrocatalysts for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 7(2), 2327–2334. https://doi.org/10.1021/acssuschemeng.8b05088
  • Soltani, T., Tayyebi, A., & Lee, B. K. (2019). Photolysis and photocatalysis of tetracycline by sonochemically heterojunctioned BiVO4/reduced graphene oxide under visible-light irradiation. Journal of Environmental Management, 232(September 2017), 713–721. https://doi.org/10.1016/j.jenvman.2018.11.133
  • Song, C., Liu, Y., Wang, Y., Tang, S., Li, W., Li, Q., … Lei, Y. (2021). Highly efficient oxygen evolution and stable water splitting by coupling NiFe LDH with metal phosphides. Science China Materials, 64(7), 1662–1670. https://doi.org/10.1007/s40843-020-1566-6
  • Song, Z., Gao, H., Liao, G., Zhang, W., & Wang, D. (2022). A novel slag-based Ce/TiO2@LDH catalyst for visible light driven degradation of tetracycline: performance and mechanism. Journal of Alloys and Compounds, 901, 163525. https://doi.org/10.1016/j.jallcom.2021.163525
  • Tagliazucca, V., Schlichte, K., Schüth, F., & Weidenthaler, C. (2013). Molybdenum-based catalysts for the decomposition of ammonia: In situ X-ray diffraction studies, microstructure, and catalytic properties. Journal of Catalysis, 305, 277–289. https://doi.org/10.1016/j.jcat.2013.05.011
  • Thi, L. N., Phan, T. T. T., Ngoc, T. N., Viswanath, N. S. M., Le, H. T. T., Tran Thi, L., … Vo, V. (2022). Prussian Blue decorated g-C3N4 – From novel synthesis to insight study on charge transfer strategy for improving visible-light driven photo-Fenton catalytic activity. Journal of Alloys and Compounds, 916, 165331. https://doi.org/10.1016/j.jallcom.2022.165331
  • Utami, H. P., Ahmad, N., Zahara, Z. A., Lesbani, A., & Mohadi, R. (2022). Green Synthesis of Nickel Aluminum Layered Double Hydroxide using Chitosan as Template for Adsorption of Phenol. Science and Technology Indonesia, 7(4), 530–535. https://doi.org/10.26554/sti.2022.7.4.530-535
  • Wei, L., Li, Z., Ye, G., Rietveld, L. C., & van Halem, D. (2022). Comparative study of low-cost fluoride removal by layered double hydroxides, geopolymers, softening pellets and struvite. Environmental Technology (United Kingdom), 43(27), 4306–4314. https://doi.org/10.1080/09593330.2021.1946600
  • Wu, S., Hu, H., Lin, Y., Zhang, J., & Hu, Y. H. (2020). Visible light photocatalytic degradation of tetracycline over TiO2. Chemical Engineering Journal, 382, 122842. https://doi.org/10.1016/j.cej.2019.122842
  • Yan, J., Chen, Y., Qian, L., Gao, W., Ouyang, D., & Chen, M. (2017). Heterogeneously catalyzed persulfate with a CuMgFe layered double hydroxide for the degradation of ethylbenzene. Journal of Hazardous Materials, 338, 372–380. https://doi.org/10.1016/j.jhazmat.2017.05.007
  • Yang, L., Li, L., Liu, Z., Lai, C., Yang, X., Shi, X., … Tang, C. (2022). Degradation of tetracycline by FeNi-LDH/Ti3C2 photo-Fenton system in water: From performance to mechanism. Chemosphere, 294(November 2021), 133736. https://doi.org/10.1016/j.chemosphere.2022.133736
  • Yildirim-Tirgil, N., Lee, J., Cho, H., Lee, H., Somu, S., Busnaina, A., & Gu, A. Z. (2019). A SWCNT based aptasensor system for antibiotic oxytetracycline detection in water samples. Analytical Methods, 11(20), 2692–2699. https://doi.org/10.1039/c9ay00455f
  • Yuan, J., Zhou, H., Li, D., & Xu, F. (2023). Construction of Fe3S4/g-C3N4 composites as photo-Fenton-like catalysts to realize high-efficiency degradation of pollutants. Ceramics International. https://doi.org/10.1016/j.ceramint.2023.01.205
  • Zhou, H., Wang, S., Jiang, J., Shao, L., Li, D., Yuan, J., & Xu, F. (2022). Magnetic Fe3S4/MoS2 with visible-light response as an efficient photo-Fenton-like catalyst: Validation in degrading tetracycline hydrochloride under mild pH conditions. Journal of Alloys and Compounds, 921, 166023. https://doi.org/10.1016/j.jallcom.2022.166023
  • Zhu, Z., Yang, R., Zhu, C., Hu, C., & Liu, B. (2021). Novel Cu-Fe/LDH@BiOI1.5 photocatalyst effectively degrades tetracycline under visible light irradiation. Advanced Powder Technology, 32(7), 2311–2321. https://doi.org/10.1016/j.apt.2021.05.008
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Atıksu Arıtma Süreçleri
Bölüm Kimya Mühendisliği
Yazarlar

Merve Baraç 0000-0002-1094-6348

Burcu Palas 0000-0002-2815-0057

Gülin Ersöz 0000-0002-5875-5946

Proje Numarası FYL-2020-22394
Yayımlanma Tarihi 3 Eylül 2024
Gönderilme Tarihi 26 Ocak 2024
Kabul Tarihi 17 Nisan 2024
Yayımlandığı Sayı Yıl 2024Cilt: 27 Sayı: 3

Kaynak Göster

APA Baraç, M., Palas, B., & Ersöz, G. (2024). REMOVAL OF VETERINARY ANTIBIOTICS BY USING LAYERED DOUBLE HYDROXIDE PHOTOCATALYSTS: EFFECTS OF REACTION PARAMETERS AND KINETIC MODELLING. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 804-820. https://doi.org/10.17780/ksujes.1425244