Araştırma Makalesi
BibTex RIS Kaynak Göster

BİNA ENERJİ PERFORMANSI ARTIRMA UYGULAMALARININ ISIL GEÇİRGENLİK KATSAYISINA ETKİSİ

Yıl 2024, Cilt: 27 Sayı: 4, 1490 - 1500, 03.12.2024
https://doi.org/10.17780/ksujes.1490789

Öz

Enerji korunumunun önemli olduğu günümüzde, yapıların enerji tüketim sınıfını belirlemek, enerji performansını artırmak, minimum enerji tüketimiyle yapılarda maksimum enerji verimliliği sağlamak amacıyla yalıtım uygulamaları yapılmaktadır. Bu çalışmada; bir kamu binasına uygulanan yalıtım incelenmiş, yalıtımın binanın ısıl performansına etkisi deneysel ve analitik metotlarla kıyaslanarak analiz edilmiştir. Çalışmada, termal kameraların kullanıldığı kızılötesi ısıl görüntüleme yöntemi kullanılmış ve bu yöntemle binanın farklı yalıtım özelliğine sahip üç cephesi incelenmiştir. İncelenen cephelerden termal kameralar vasıtasıyla ısıl görüntüler alınmış; bu ısıl görüntülerin analizi sonucu duvarların mevcut ısıl geçirgenlik katsayısı (UKIZILÖTESİ, W/m2K) belirlenmiştir. Ayrıca bina cephesini oluşturan malzemelerin kalınlıkları ve TS 825’deki ısıl iletkenlik hesap değerleri (λTS825) kullanılarak duvarların ısıl geçirgenlik katsayısı (UTS825) analitik olarak hesaplanmıştır. Sonuç olarak; deneysel verilerle belirlenen UKIZILÖTESİ değeri, analitik yöntemle belirlenen UTS825 değerine göre daha yüksek bulunmuştur. Bu sonuca göre duvarların mevcut ısıl performansı, analitik olarak belirlenen (bina enerji kimlik belgesinde de yazılan) ısıl performansından daha düşüktür. Yalıtım uygulaması yapıldıktan sonra duvarların hem UKIZILÖTESİ hem de UTS825 değerinin azaldığı görülmüştür. Deneysel ve analitik verilere göre yalıtımın binanın ısıl performansına etkisi olumlu olmuştur.

Kaynakça

  • Albatici, R. Tonelli, A. M. & Chiogna M. (2015). A Comprehensive Experimental Approach for the Validation of Quantitative Infrared Thermography in the Evaluation of Building Thermal Transmittance. Applied Energy, 141, 218–228. https://doi.org/10.2339/politeknik.868410
  • Atsonios, I.A., Mandilaras, I. D. Kontogeorgos, D. A. & Founti, M.A. (2017). A comparative assessment of the standardized methods for the in–situ measurement of the thermal resistance of building walls. Energy and Buildings 154, 198–206. http://dx.doi.org/10.1016/j.enbuild.2017.08.064
  • Balaras, C. A. & Argiriou, A. A. (2002). Infrared Thermography for Building Diagnostics. Energy and Buildings, 34(2), 171-183.
  • ISO 9869-1 (2014). Thermal Insulation—Building Elements—In-Situ Measurement of Thermal Resistance and Thermal Transmittance—Part 1: Heat Flow Meter Method. International Standard.
  • Çengel, Y. (2011). Isı ve Kütle Transferi Pratik Bir Yaklaşım. (3. ed.). İzmir: Güven Kitabevi.
  • Department of Energy (DOE), (2012), 2011 Buildings energy databook. 5th edn, Energy Efficiency & Renewable Energy Department. 5th edn. Maryland: D&R International, Ltd. Available : 01.09.2024 chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ieer.org/wp/wp-content/uploads/2012/03/DOE-2011-Buildings-Energy-DataBook-BEDB.pdf
  • Ficco, G. Iannetta, F. Ianniello, E. Alfano, F. R. A. & Dell’Isola, M. (2015). U-Value in Situ Measurement for Energy Diagnosis of Existing Buildings. Energy and Buildings, 104, 108-121. dx.doi.org/10.1016/j.enbuild.2015.06.071
  • Fokaides, P. A. & Kalogirou, S. A. (2011). Application of Infrared Thermography for the Determination of the Overall Heat Transfer Coefficient (U-Value) in Building Envelopes. Applied Energy, 88, 4358–4365. doi:10.1016/j.apenergy.2011.05.014
  • François, A. Ibos, L. Feuillet, V. & Meulemans, J. (2021). In Situ Measurement Method for the Quantification of the Thermal Transmittance of a Non-Homogeneous Wall or a Thermal Bridge Using an Inverse Technique and Active Infrared Thermography. Energy & Buildings, 233, 110633. https://doi.org/10.1016/j.enbuild.2020.110633
  • Danielski, I. & Froling, M. (2015). Diagnosis of Buildings' Thermal Performance-a Quantitative Method Using Thermography Under Non-Steady State Heat Flow. Energy Procedia, 83.
  • Desogus, G. Mura, S. & Ricciu, R. (2011). Comparing different approaches to in situ measurement of building components thermal resistance, Energy Build. 43 (10), 2613–2620.
  • Kim, S. Seo, J. Jeong, H. & Kim, J. (2022). In Situ Measurement of the Heat Loss Coefficient of Thermal Bridges in a Building Envelope. Energy & Buildings. 256, 111627. https://doi.org/10.1016/j.enbuild.2021.111627
  • Koçkar Tuğla, R. (2022). Mevcut Yapı Cephelerinin Isıl Özelliklerinin Nicel Kızılötesi Isıl Görüntüleme Yöntemi ile Yerinde İncelenmesi, Politeknik Dergisi, 25 (4), 1633–1643. https://doi.org/10.2339/politeknik.868410
  • Lehmann, B. Ghazi Wakili, K., Frank, T. Vera Collado, B. & Tanner, C. (2013). Effects of Individual Climatic Parameters on the Infrared Thermography of Buildings,” Applied. Energy, 110, 29–43. http://dx.doi.org/10.1016/j.apenergy.2013.03.066
  • Meng, X. Yan, B. Gao, Y. Wang, J. Zhang, W. & Long, E. (2015). Factors Affecting the In-Situ Measurement Accuracy of the Wall Heat Transfer Coefficient Using the Heat Flow Meter Method. Energy and Buildings, 86, 754 –765. http://dx.doi.org/10.1016/j.enbuild.2014.11.005
  • Mandilaras, I. Atsonios, I. Zannis, G. & Founti, M. (2014) Thermal Performance of a Building Envelope Incorporating ETICS with Vacuum Insulation Panels and EPS, Energy Build. 85 654–665. https://doi.org/10.1016/j. enbuild.2014.06.053
  • Nardi, I. Paoletti, D. Ambrosini, D. Rubeis, T. & Sfarra, S. (2016). U-Value Assessment by Infrared Thermography: A Comparison of Different Calculation Methods in A Guarded Hot Box. Energy and Buildings, 122, 211-221. http://dx.doi.org/10.1016/j.enbuild.2016.04.017
  • O’Grady, M. Lechowska, A. A. and Harte, A. M. (2017). Infrared Thermography Technique As an in-situ Method of Assessing Heat Loss Through Thermal Bridging. Energy and Buildings, 135, 20–32.
  • Park, S. Shim, J. & Song, D. (2023) A Comparative Assessment of In-Situ Measurement Methods for Thermal Resistance of Building Walls Under Mild Climate Condition. Journal of Building Engineering, 77, 107417. https://doi.org/10.1016/j.jobe.2023.107417
  • Sayın, M. & Tavukçuoğlu, A. (2016). Cephelerin Isı Yalıtımlılık Durumlarının Isıl Görüntüleme ile Değerlendirilmesi”, Yalıtım Dergisi, 152, 46-54.
  • Tanner, C. Lehmann, B. Frank, T. & Ghazi Wakili, K. (2011). A Proposal for Standardized Thermal Images (in German). Bauphysik, 33, 345–56. Doi: 10.1002/bapi.20111080
  • Titman, D. J. (2001). Applications of Thermography in Non-Destructive Testing of Structures. NDT & E International, 34, 149-154.
  • Tuğla, R. Tavukçuoğlu, A. & Arslan, M. (2013). Examination of Thermal Properties and Failures of Brick Walls by the Use of Infrared Thermography and Hot Box Method. International conference & exhibition on “Application of efficient & renewable energy technologies in low-cost buildings and construction, Ankara, Turkey, 180-199.
  • TS 825, (2013). Binalarda ısı yalıtım kuralları, Türk Standartları Enstitüsü, Ankara.
  • TS EN 1745, (2004). Kâgir ve kâgir mamulleri- tasarım isıl değerlerinin tayini metotları, Türk Standartları Enstitüsü, Ankara.
  • TS EN ISO 6946, (2009). Yapı Bileşenleri ve Yapı Elemanları, Isıl Direnç ve Isıl Geçirgenlik Hesaplama Yöntemi. Türk Standartları Enstitüsü, Ankara.

EFFECT OF BUILDING ENERGY PERFORMANCE INCREASING APPLICATIONS ON THERMAL TRANSMITTANCE VALUE

Yıl 2024, Cilt: 27 Sayı: 4, 1490 - 1500, 03.12.2024
https://doi.org/10.17780/ksujes.1490789

Öz

Today, when energy conservation is important, insulation applications are made to determine the energy consumption class of buildings, to increase energy performance, and to provide maximum energy efficiency in buildings with minimum energy consumption. In this study, the insulation applied to a public building is investigated, and the effect of insulation on the thermal performance of the building is analysed by comparing experimental and analytical methods. The study used the infrared thermal imaging method using thermal cameras, and three facades of the building with different insulation properties were examined with this method. Thermal images were taken from the examined facades using thermal cameras; as a result of the analysis of these thermal images, the current thermal transmittance value of the walls (UINFRARED, W/m2K) was determined. In addition, the thermal transmittance value of the walls (UTS825) was analytically calculated using the thicknesses of the building wall materials and the thermal conductivity in TS 825 (λTS825). As a result, the UINFRARED value determined by experimental data was higher than the UTS825 value determined by the analytical method. According to this result, the current thermal performance of the walls is lower than the analytically determined thermal performance (also written in the building energy identity certificate). After the insulation application, it was observed that both the UINFRARED and UTS825 values of the walls decreased. According to the experimental and analytical data, the effect of insulation on the thermal performance of the building was positive.

Kaynakça

  • Albatici, R. Tonelli, A. M. & Chiogna M. (2015). A Comprehensive Experimental Approach for the Validation of Quantitative Infrared Thermography in the Evaluation of Building Thermal Transmittance. Applied Energy, 141, 218–228. https://doi.org/10.2339/politeknik.868410
  • Atsonios, I.A., Mandilaras, I. D. Kontogeorgos, D. A. & Founti, M.A. (2017). A comparative assessment of the standardized methods for the in–situ measurement of the thermal resistance of building walls. Energy and Buildings 154, 198–206. http://dx.doi.org/10.1016/j.enbuild.2017.08.064
  • Balaras, C. A. & Argiriou, A. A. (2002). Infrared Thermography for Building Diagnostics. Energy and Buildings, 34(2), 171-183.
  • ISO 9869-1 (2014). Thermal Insulation—Building Elements—In-Situ Measurement of Thermal Resistance and Thermal Transmittance—Part 1: Heat Flow Meter Method. International Standard.
  • Çengel, Y. (2011). Isı ve Kütle Transferi Pratik Bir Yaklaşım. (3. ed.). İzmir: Güven Kitabevi.
  • Department of Energy (DOE), (2012), 2011 Buildings energy databook. 5th edn, Energy Efficiency & Renewable Energy Department. 5th edn. Maryland: D&R International, Ltd. Available : 01.09.2024 chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ieer.org/wp/wp-content/uploads/2012/03/DOE-2011-Buildings-Energy-DataBook-BEDB.pdf
  • Ficco, G. Iannetta, F. Ianniello, E. Alfano, F. R. A. & Dell’Isola, M. (2015). U-Value in Situ Measurement for Energy Diagnosis of Existing Buildings. Energy and Buildings, 104, 108-121. dx.doi.org/10.1016/j.enbuild.2015.06.071
  • Fokaides, P. A. & Kalogirou, S. A. (2011). Application of Infrared Thermography for the Determination of the Overall Heat Transfer Coefficient (U-Value) in Building Envelopes. Applied Energy, 88, 4358–4365. doi:10.1016/j.apenergy.2011.05.014
  • François, A. Ibos, L. Feuillet, V. & Meulemans, J. (2021). In Situ Measurement Method for the Quantification of the Thermal Transmittance of a Non-Homogeneous Wall or a Thermal Bridge Using an Inverse Technique and Active Infrared Thermography. Energy & Buildings, 233, 110633. https://doi.org/10.1016/j.enbuild.2020.110633
  • Danielski, I. & Froling, M. (2015). Diagnosis of Buildings' Thermal Performance-a Quantitative Method Using Thermography Under Non-Steady State Heat Flow. Energy Procedia, 83.
  • Desogus, G. Mura, S. & Ricciu, R. (2011). Comparing different approaches to in situ measurement of building components thermal resistance, Energy Build. 43 (10), 2613–2620.
  • Kim, S. Seo, J. Jeong, H. & Kim, J. (2022). In Situ Measurement of the Heat Loss Coefficient of Thermal Bridges in a Building Envelope. Energy & Buildings. 256, 111627. https://doi.org/10.1016/j.enbuild.2021.111627
  • Koçkar Tuğla, R. (2022). Mevcut Yapı Cephelerinin Isıl Özelliklerinin Nicel Kızılötesi Isıl Görüntüleme Yöntemi ile Yerinde İncelenmesi, Politeknik Dergisi, 25 (4), 1633–1643. https://doi.org/10.2339/politeknik.868410
  • Lehmann, B. Ghazi Wakili, K., Frank, T. Vera Collado, B. & Tanner, C. (2013). Effects of Individual Climatic Parameters on the Infrared Thermography of Buildings,” Applied. Energy, 110, 29–43. http://dx.doi.org/10.1016/j.apenergy.2013.03.066
  • Meng, X. Yan, B. Gao, Y. Wang, J. Zhang, W. & Long, E. (2015). Factors Affecting the In-Situ Measurement Accuracy of the Wall Heat Transfer Coefficient Using the Heat Flow Meter Method. Energy and Buildings, 86, 754 –765. http://dx.doi.org/10.1016/j.enbuild.2014.11.005
  • Mandilaras, I. Atsonios, I. Zannis, G. & Founti, M. (2014) Thermal Performance of a Building Envelope Incorporating ETICS with Vacuum Insulation Panels and EPS, Energy Build. 85 654–665. https://doi.org/10.1016/j. enbuild.2014.06.053
  • Nardi, I. Paoletti, D. Ambrosini, D. Rubeis, T. & Sfarra, S. (2016). U-Value Assessment by Infrared Thermography: A Comparison of Different Calculation Methods in A Guarded Hot Box. Energy and Buildings, 122, 211-221. http://dx.doi.org/10.1016/j.enbuild.2016.04.017
  • O’Grady, M. Lechowska, A. A. and Harte, A. M. (2017). Infrared Thermography Technique As an in-situ Method of Assessing Heat Loss Through Thermal Bridging. Energy and Buildings, 135, 20–32.
  • Park, S. Shim, J. & Song, D. (2023) A Comparative Assessment of In-Situ Measurement Methods for Thermal Resistance of Building Walls Under Mild Climate Condition. Journal of Building Engineering, 77, 107417. https://doi.org/10.1016/j.jobe.2023.107417
  • Sayın, M. & Tavukçuoğlu, A. (2016). Cephelerin Isı Yalıtımlılık Durumlarının Isıl Görüntüleme ile Değerlendirilmesi”, Yalıtım Dergisi, 152, 46-54.
  • Tanner, C. Lehmann, B. Frank, T. & Ghazi Wakili, K. (2011). A Proposal for Standardized Thermal Images (in German). Bauphysik, 33, 345–56. Doi: 10.1002/bapi.20111080
  • Titman, D. J. (2001). Applications of Thermography in Non-Destructive Testing of Structures. NDT & E International, 34, 149-154.
  • Tuğla, R. Tavukçuoğlu, A. & Arslan, M. (2013). Examination of Thermal Properties and Failures of Brick Walls by the Use of Infrared Thermography and Hot Box Method. International conference & exhibition on “Application of efficient & renewable energy technologies in low-cost buildings and construction, Ankara, Turkey, 180-199.
  • TS 825, (2013). Binalarda ısı yalıtım kuralları, Türk Standartları Enstitüsü, Ankara.
  • TS EN 1745, (2004). Kâgir ve kâgir mamulleri- tasarım isıl değerlerinin tayini metotları, Türk Standartları Enstitüsü, Ankara.
  • TS EN ISO 6946, (2009). Yapı Bileşenleri ve Yapı Elemanları, Isıl Direnç ve Isıl Geçirgenlik Hesaplama Yöntemi. Türk Standartları Enstitüsü, Ankara.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapı Malzemeleri
Bölüm İnşaat Mühendisliği
Yazarlar

Rukiye Koçkar Tuğla 0000-0001-9731-4206

Yayımlanma Tarihi 3 Aralık 2024
Gönderilme Tarihi 27 Mayıs 2024
Kabul Tarihi 17 Eylül 2024
Yayımlandığı Sayı Yıl 2024Cilt: 27 Sayı: 4

Kaynak Göster

APA Koçkar Tuğla, R. (2024). BİNA ENERJİ PERFORMANSI ARTIRMA UYGULAMALARININ ISIL GEÇİRGENLİK KATSAYISINA ETKİSİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(4), 1490-1500. https://doi.org/10.17780/ksujes.1490789