Araştırma Makalesi
BibTex RIS Kaynak Göster

KAFATASI KIRIKLARININ TEŞHİSİNDE YAPAY ZEKÂ: GÜNCEL DERİN ÖĞRENME MİMARİ PERFORMANSLARI

Yıl 2025, Cilt: 28 Sayı: 1, 51 - 64, 03.03.2025

Öz

Kafa travmaları, ciddi sonuçlara yol açabilen ve etkileri uzun yıllar sürebilecek sağlık sorunlarından biridir. Teşhis, ilk aşamada nörolojik muayene ile başlar ve gerektiğinde bilgisayarlı tomografi (BT) kullanılır. Kafatası kırıkları, diğer kafa travmalarına göre daha ciddi hasarlara eşlik ederler ve sıkça görülür. Özellikle ilk müdahalenin pratisyen hekimler ve acil uzmanları tarafından yapılması, BT görüntülerinin yorumlanmasında uzmanlık ve destek gerektirir. Bu noktada, özellikle ilk teşhis ve tanı aşamasında hekimlere destek olacak yapay zeka tekniklerinin varlığı büyük bir önem taşımaktadır. Bu çalışmada kafatası kırığının tespiti için kullanılabilecek dört farklı mimarinin alt modelleriyle birlikte kapsamlı bir karşılaştırması yapılmıştır. Bu amaçla Verimli Sinir Ağı (EfficientNet), Artık Ağlar (ResNet), Residual Networks with Aggregated Residual Transformations (ResNeXt) ve Maximum Vision Transformer (MaxVit) mimarileri çalışmaya dahil edilmiştir. Modellerin kafatası kırığını sınıflandırma açısından başarısı çalışmaya özgü olarak toplanan kapsamlı ve güncel bir veri kümesi üzerinden gösterilmiştir. Deneysel sonuçlar ile hem hangi yöntemin kafatası kırığı açısından daha uygun ve doğru sonuçlar verdiği ortaya konulmuş hem de güncel derin öğrenme mimarilerinin bu alandaki durumu özetlenmiştir.

Kaynakça

  • Abubacker, N. F., Azman, A., Azrifah, M., & Doraisamy, S. (2013, December). An approach for an automatic fracture detection of skull dicom images based on neighboring pixels. In 2013 13th International Conference on Intellient Systems Design and Applications (pp. 177-181). IEEE. https://doi.org/10.1109/ISDA.2013.6920731
  • Bakchy, S. C., Peyal, H. I., Islam, M. I., Yeamin, G. K., Miraz, S., & Abdal, M. N. (2023, September). A lightweight-CNN model for efficient lung cancer detection and Grad-CAM visualization. In 2023 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD) (pp. 254-258). IEEE. https://doi.org/10.1109/ICICT4SD59951.2023.10303569 Brain Trauma Foundation. Traumatic brain injury statistics. (2024). https://www.braintrauma.org/ Son Erişim: 01.07.2024
  • Chilamkurthy, S., Ghosh, R., Tanamala, S., Biviji, M., Campeau, N. G., Venugopal, V. K., ... & Warier, P. (2018). Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. The Lancet, 392(10162), 2388-2396. https://doi.org/10.1016/S0140-6736(18)31645-3
  • Choi, J. W., Cho, Y. J. , Ha, J. Y., Lee, Y. Y. , Koh, S. Y. , Seo, J. Y. , Choi, Y. H. , Cheon, J. , Phi, J. H. , Kim, I. , Yang, J. & Kim, W. S. (2022). Deep learning-assisted diagnosis of pediatric skull fractures on plain radiographs. Korean Journal of Radiology, 23(3), 343-354. https://doi.org/10.3348/kjr.2021.0449.
  • Gençtürk, T. H., Gülağız, F. K., & Kaya, İ. (2023). Derin öğrenme yöntemleri kullanılarak BT taramalarında beyin kanaması teşhisinin karşılaştırmalı bir analizi. Journal of Intelligent Systems: Theory and Applications, 6(1), 75-84. https://doi.org/10.38016/jista.1215025
  • Gençtürk, T. H., GülağIz, F. K., & Kaya, İ. (2024). Detection and segmentation of subdural hemorrhage on head CT images. IEEE Access, 12, 82235-82246. https://doi.org/10.1109/ACCESS.2024.3411932 Greenberg, M. S. (2010). Handbook of neurosurgery. (7th ed.) Thieme. ISBN: 978-1-60406-326-4.
  • Guo, Y., He, Y., Lyu, J., Zhou, Z., Yang, D., Ma, L., ... & Dai, Q. (2022). Deep learning with weak annotation from diagnosis reports for detection of multiple head disorders: a prospective, multicentre study. The Lancet Digital Health, 4(8), e584-e593. https://doi.org/10.1016/S2589-7500(22)00090-5
  • Han, J., Kamber, M., & Pei, J. (2012). Data mining concepts and techniques. (3rd ed.). Waltham: Morgan Kaufmann Publishers.
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016, June). Deep residual learning for image recognition. In Proceedings of the IEEE Conference On Computer Vision And Pattern Recognition (pp. 770-778). IEEE. https://doi.org/10.1109/CVPR.2016.90
  • Kaya, İ., Gençtürk, T. H. & Kaya Gülağız, F. (2023). A revolutionary acute subdural hematoma detection based on two-tiered artificial intelligence model. Ulusal Travma Acil Cerrahi Dergisi, 29(8), 858–871. PMID: 37563894; PMCID: PMC10560802. https://doi.org/10.14744/tjtes.2023.76756
  • Lin, X. , Yan, Z. , Kuang, Z., Zhang, H., Deng, X. & Yu L. (2022). Fracture R‐CNN: An anchor‐efficient anti‐interference framework for skull fracture detection in CT images. Medical Physics, 49(11), 7179-7192. https://doi.org/10.1002/mp.15809
  • Lin, E., & Yuh, E. L. (2022). Computational approaches for acute traumatic brain injury image recognition. Frontiers in Neurology, 13, 791816, 1-25. https://doi.org/10.3389/fneur.2022.791816
  • Maconochie, I. & Ross, M. (2007). Head injury (moderate to severe). BMJ Clin Evid, 2007(1210), 1-13, 2007. PMID: 19450357; PMCID: PMC2943769.
  • Mangrulkar, A., Rane, S. B., & Sunnapwar, V. (2021). Automated skull damage detection from assembled skull model using computer vision and machine learning. International Journal of Information Technology, 13, 1785-1790. https://doi.org/10.1007/s41870-021-00752-5
  • Muschelli III, J. (2020). ROC and AUC with a binary predictor: a potentially misleading metric. Journal of Classification, 37(3), 696-708. https://doi.org/10.1007/s00357-019-09345-1
  • Sehlikoğlu, K., Türkoğlu, A., Bork, T., & Batbaş, M. (2024). Investigation of fatal traumatic head injuries. Ulus Travma Acil Cerrahi Derg, 30(3), 160-166. PMID: 38506383; PMCID: PMC10977496. https://doi.org/10.14744/tjtes.2024.32463 Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings Of The IEEE International Conference On Computer Vision (pp. 618-626). IEEE. https://doi.org/10.1109/ICCV.2017.74
  • Shan, W., Guo, J., Mao, X., Zhang, Y., Huang, Y., Wang, S., ... & Wang, Y. (2021). Automated identification of skull fractures with deep learning: a comparison between object detection and segmentation approach. Frontiers in Neurology, 12, 687931, 1-10. https://doi.org/10.3389/fneur.2021.687931
  • Shao, H., & Zhao, H. (2003, September). Automatic analysis of a skull fracture based on image content. In Third International Symposium on Multispectral Image Processing and Pattern Recognition (pp. 741-746). SPIE. https://doi.org/10.1117/12.538780
  • Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In International Conference On Machine Learning (pp. 6105-6114). PMLR. https://doi.org/10.48550/arXiv.1905.11946
  • Tu, Z., Talebi, H., Zhang, H., Yang, F., Milanfar, P., Bovik, A., & Li, Y. (2022, October). MaxVit: Multi-axis vision transformer. In European Conference on Computer Vision (pp. 459-479). Cham: Springer Nature Switzerland. https://doi.org/10.48550/arXiv.2204.01697
  • Türkiye Cumhuriyeti Sağlık Bakanlığı. Health statistics Türkiye, Health statistics yearbook for Türkiye . (2019). https://www.saglik.gov.tr/TR,84966/saglik-istatistikleri-yilligi-2019-yayinlanmistir.html Son Erişim: 23.06.2024.
  • Türkiye Ministry of Health Expert Board in Medicine. Türkiye emergency medicine specialty training curriculum. (2022). https://tuk.saglik.gov.tr›aciltipmufredatv24doc. Son Erişim: 23.06.2024.
  • Wallis, A. & McCoubrie, P. (2011). The radiology report--are we getting the message across?. Clin Radiol, 66(11), 1015-1022. https://doi.org/10.1016/j.crad.2011.05.013
  • Wan Zaki, W. M. D., Ahmad Fauzi, M. F., & Besar, R. (2009, November). A new approach of skull fracture detection in CT brain images. In Visual Informatics: Bridging Research and Practice: First International Visual Informatics Conference (pp. 156-167). Springer Berlin Heidelberg.
  • Wang, H. C., Wang, S. C., Yan, J. L., & Ko, L. W. (2023). Artificial Intelligence model trained with sparse data to detect facial and cranial bone fractures from head CT. Journal of Digital Imaging, 36(4), 1408-1418. https://doi.org/10.1007/s10278-023-00829-6
  • Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017, July). Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE Conference On Computer Vision And Pattern Recognition (pp. 1492-1500). IEEE. https://doi.org/10.1109/CVPR.2017.634
  • Yamada, A., Teramoto, A., Otsuka, T., Kudo, K., Anno, H., & Fujita, H. (2016, August). Preliminary study on the automated skull fracture detection in CT images using black-hat transform. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 6437-6440). IEEE. https://doi.org/10.1109/EMBC.2016.7592202
  • Yamada, A., Teramoto, A., Kudo, K., Otsuka, T., Anno, H., & Fujita, H. (2018). Basic study on the automated detection method of skull fracture in head ct images using surface selective black-hat transform. Journal of Medical Imaging and Health Informatics, 8(5), 1069-1076. https://doi.org/10.1166/jmihi.2018.2410
  • Zaki, W. M. D. W. , Fauzi, M. F. A. & R. Besar. (2008, November) .Automated method of fracture detection in CT brain images. In 2008 3rd International Conference on Intelligent System and Knowledge Engineering (pp. 1156-1160). IEEE. https://doi.org/10.1109/ISKE.2008.4731105

ARTIFICIAL INTELLIGENCE IN SKULL FRACTURE DIAGNOSIS: CURRENT DEEP LEARNING ARCHITECTURE PERFORMANCES

Yıl 2025, Cilt: 28 Sayı: 1, 51 - 64, 03.03.2025

Öz

Cranial injuries are one of the health issues that can lead to serious consequences and have effects that may last for many years. Diagnosis begins with a neurological examination in the initial stage and employs computed tomography (CT) when necessary. Skull fractures are more frequently accompanied by severe injuries compared to other types of head trauma and are commonly observed. The initial intervention is often performed by general practitioners and emergency specialists, necessitating expertise and support in interpreting CT images. At this point, the presence of artificial intelligence techniques to assist physicians, particularly during the initial diagnosis and evaluation stages, is of significant importance. In this study, a comprehensive comparison of four different architectures that can be used for skull fracture detection has been made together with their sub-models. For this purpose, Efficient Neural Network (EfficientNet), Residual Network (ResNet), Residual Networks with Aggregated Residual Transformations (ResNeXt) and Maximum Vision Transformer (MaxVit) architectures are included in the study. The success of the models in terms of skull fracture classification is demonstrated on a comprehensive and up-to-date dataset collected specifically for the study. With the experimental results, both which method is more appropriate and accurate for skull fracture classification and the state of the art of current deep learning architectures in this field are summarized

Kaynakça

  • Abubacker, N. F., Azman, A., Azrifah, M., & Doraisamy, S. (2013, December). An approach for an automatic fracture detection of skull dicom images based on neighboring pixels. In 2013 13th International Conference on Intellient Systems Design and Applications (pp. 177-181). IEEE. https://doi.org/10.1109/ISDA.2013.6920731
  • Bakchy, S. C., Peyal, H. I., Islam, M. I., Yeamin, G. K., Miraz, S., & Abdal, M. N. (2023, September). A lightweight-CNN model for efficient lung cancer detection and Grad-CAM visualization. In 2023 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD) (pp. 254-258). IEEE. https://doi.org/10.1109/ICICT4SD59951.2023.10303569 Brain Trauma Foundation. Traumatic brain injury statistics. (2024). https://www.braintrauma.org/ Son Erişim: 01.07.2024
  • Chilamkurthy, S., Ghosh, R., Tanamala, S., Biviji, M., Campeau, N. G., Venugopal, V. K., ... & Warier, P. (2018). Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. The Lancet, 392(10162), 2388-2396. https://doi.org/10.1016/S0140-6736(18)31645-3
  • Choi, J. W., Cho, Y. J. , Ha, J. Y., Lee, Y. Y. , Koh, S. Y. , Seo, J. Y. , Choi, Y. H. , Cheon, J. , Phi, J. H. , Kim, I. , Yang, J. & Kim, W. S. (2022). Deep learning-assisted diagnosis of pediatric skull fractures on plain radiographs. Korean Journal of Radiology, 23(3), 343-354. https://doi.org/10.3348/kjr.2021.0449.
  • Gençtürk, T. H., Gülağız, F. K., & Kaya, İ. (2023). Derin öğrenme yöntemleri kullanılarak BT taramalarında beyin kanaması teşhisinin karşılaştırmalı bir analizi. Journal of Intelligent Systems: Theory and Applications, 6(1), 75-84. https://doi.org/10.38016/jista.1215025
  • Gençtürk, T. H., GülağIz, F. K., & Kaya, İ. (2024). Detection and segmentation of subdural hemorrhage on head CT images. IEEE Access, 12, 82235-82246. https://doi.org/10.1109/ACCESS.2024.3411932 Greenberg, M. S. (2010). Handbook of neurosurgery. (7th ed.) Thieme. ISBN: 978-1-60406-326-4.
  • Guo, Y., He, Y., Lyu, J., Zhou, Z., Yang, D., Ma, L., ... & Dai, Q. (2022). Deep learning with weak annotation from diagnosis reports for detection of multiple head disorders: a prospective, multicentre study. The Lancet Digital Health, 4(8), e584-e593. https://doi.org/10.1016/S2589-7500(22)00090-5
  • Han, J., Kamber, M., & Pei, J. (2012). Data mining concepts and techniques. (3rd ed.). Waltham: Morgan Kaufmann Publishers.
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016, June). Deep residual learning for image recognition. In Proceedings of the IEEE Conference On Computer Vision And Pattern Recognition (pp. 770-778). IEEE. https://doi.org/10.1109/CVPR.2016.90
  • Kaya, İ., Gençtürk, T. H. & Kaya Gülağız, F. (2023). A revolutionary acute subdural hematoma detection based on two-tiered artificial intelligence model. Ulusal Travma Acil Cerrahi Dergisi, 29(8), 858–871. PMID: 37563894; PMCID: PMC10560802. https://doi.org/10.14744/tjtes.2023.76756
  • Lin, X. , Yan, Z. , Kuang, Z., Zhang, H., Deng, X. & Yu L. (2022). Fracture R‐CNN: An anchor‐efficient anti‐interference framework for skull fracture detection in CT images. Medical Physics, 49(11), 7179-7192. https://doi.org/10.1002/mp.15809
  • Lin, E., & Yuh, E. L. (2022). Computational approaches for acute traumatic brain injury image recognition. Frontiers in Neurology, 13, 791816, 1-25. https://doi.org/10.3389/fneur.2022.791816
  • Maconochie, I. & Ross, M. (2007). Head injury (moderate to severe). BMJ Clin Evid, 2007(1210), 1-13, 2007. PMID: 19450357; PMCID: PMC2943769.
  • Mangrulkar, A., Rane, S. B., & Sunnapwar, V. (2021). Automated skull damage detection from assembled skull model using computer vision and machine learning. International Journal of Information Technology, 13, 1785-1790. https://doi.org/10.1007/s41870-021-00752-5
  • Muschelli III, J. (2020). ROC and AUC with a binary predictor: a potentially misleading metric. Journal of Classification, 37(3), 696-708. https://doi.org/10.1007/s00357-019-09345-1
  • Sehlikoğlu, K., Türkoğlu, A., Bork, T., & Batbaş, M. (2024). Investigation of fatal traumatic head injuries. Ulus Travma Acil Cerrahi Derg, 30(3), 160-166. PMID: 38506383; PMCID: PMC10977496. https://doi.org/10.14744/tjtes.2024.32463 Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings Of The IEEE International Conference On Computer Vision (pp. 618-626). IEEE. https://doi.org/10.1109/ICCV.2017.74
  • Shan, W., Guo, J., Mao, X., Zhang, Y., Huang, Y., Wang, S., ... & Wang, Y. (2021). Automated identification of skull fractures with deep learning: a comparison between object detection and segmentation approach. Frontiers in Neurology, 12, 687931, 1-10. https://doi.org/10.3389/fneur.2021.687931
  • Shao, H., & Zhao, H. (2003, September). Automatic analysis of a skull fracture based on image content. In Third International Symposium on Multispectral Image Processing and Pattern Recognition (pp. 741-746). SPIE. https://doi.org/10.1117/12.538780
  • Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In International Conference On Machine Learning (pp. 6105-6114). PMLR. https://doi.org/10.48550/arXiv.1905.11946
  • Tu, Z., Talebi, H., Zhang, H., Yang, F., Milanfar, P., Bovik, A., & Li, Y. (2022, October). MaxVit: Multi-axis vision transformer. In European Conference on Computer Vision (pp. 459-479). Cham: Springer Nature Switzerland. https://doi.org/10.48550/arXiv.2204.01697
  • Türkiye Cumhuriyeti Sağlık Bakanlığı. Health statistics Türkiye, Health statistics yearbook for Türkiye . (2019). https://www.saglik.gov.tr/TR,84966/saglik-istatistikleri-yilligi-2019-yayinlanmistir.html Son Erişim: 23.06.2024.
  • Türkiye Ministry of Health Expert Board in Medicine. Türkiye emergency medicine specialty training curriculum. (2022). https://tuk.saglik.gov.tr›aciltipmufredatv24doc. Son Erişim: 23.06.2024.
  • Wallis, A. & McCoubrie, P. (2011). The radiology report--are we getting the message across?. Clin Radiol, 66(11), 1015-1022. https://doi.org/10.1016/j.crad.2011.05.013
  • Wan Zaki, W. M. D., Ahmad Fauzi, M. F., & Besar, R. (2009, November). A new approach of skull fracture detection in CT brain images. In Visual Informatics: Bridging Research and Practice: First International Visual Informatics Conference (pp. 156-167). Springer Berlin Heidelberg.
  • Wang, H. C., Wang, S. C., Yan, J. L., & Ko, L. W. (2023). Artificial Intelligence model trained with sparse data to detect facial and cranial bone fractures from head CT. Journal of Digital Imaging, 36(4), 1408-1418. https://doi.org/10.1007/s10278-023-00829-6
  • Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017, July). Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE Conference On Computer Vision And Pattern Recognition (pp. 1492-1500). IEEE. https://doi.org/10.1109/CVPR.2017.634
  • Yamada, A., Teramoto, A., Otsuka, T., Kudo, K., Anno, H., & Fujita, H. (2016, August). Preliminary study on the automated skull fracture detection in CT images using black-hat transform. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 6437-6440). IEEE. https://doi.org/10.1109/EMBC.2016.7592202
  • Yamada, A., Teramoto, A., Kudo, K., Otsuka, T., Anno, H., & Fujita, H. (2018). Basic study on the automated detection method of skull fracture in head ct images using surface selective black-hat transform. Journal of Medical Imaging and Health Informatics, 8(5), 1069-1076. https://doi.org/10.1166/jmihi.2018.2410
  • Zaki, W. M. D. W. , Fauzi, M. F. A. & R. Besar. (2008, November) .Automated method of fracture detection in CT brain images. In 2008 3rd International Conference on Intelligent System and Knowledge Engineering (pp. 1156-1160). IEEE. https://doi.org/10.1109/ISKE.2008.4731105
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Derin Öğrenme
Bölüm Bilgisayar Mühendisliği
Yazarlar

Fidan Kaya Gülağız 0000-0003-3519-9278

Tuğrul Hakan Gençtürk 0000-0002-2736-271X

İsmail Kaya 0000-0002-4128-5845

Yayımlanma Tarihi 3 Mart 2025
Gönderilme Tarihi 12 Temmuz 2024
Kabul Tarihi 4 Ekim 2024
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 1

Kaynak Göster

APA Kaya Gülağız, F., Gençtürk, T. H., & Kaya, İ. (2025). KAFATASI KIRIKLARININ TEŞHİSİNDE YAPAY ZEKÂ: GÜNCEL DERİN ÖĞRENME MİMARİ PERFORMANSLARI. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(1), 51-64.