Araştırma Makalesi
BibTex RIS Kaynak Göster

INVESTIGATION OF THE PROTECTION POTENTIAL OF STONE POWDER WITH DIFFERENT GRAIN SIZES BELONGING TO IGNIMBRITES AND EPOXY RESIN BASED OF COMPOSITES AGAINST DAMAGE DUE TO SALT EFFECT

Yıl 2025, Cilt: 28 Sayı: 1, 169 - 178, 03.03.2025

Öz

The stones used in the construction of buildings are subject to deterioration due to reasons such as humidity, salt crystallization, climatic effects, air pollution and biological factors. Salt crystallization is one of the most effective factors in the deterioration of stones. It causes damages such as decay, cracks and abrasions in stones through salt crystallization. This study aims to use ignimbrite stone powder (ISP) and epoxy resin (ER) based composites in the repair of salt crystallization damages in building stones. For this purpose, composites were prepared with stone powder of different grain sizes (63 μm, 150 μm, 250 μm, 500 μm, 1000 μm) belonging to ignimbrites extracted from Nevsehir province and its surroundings and used in the construction of structures, and epoxy resin as matrix. To investigate the protection potential of the composites against salt-induced damage; water absorption, apparent density, open porosity and salt crystallization experiments were carried out. According to the experiment results, it was determined that the ISP sample with a size of <63 μm at 70 wt.% was more resistant to salt effects than other samples. Since this composite is effective in protecting building stones against salt effects, it has been concluded that it can be used with mortar injection application for the repair of decayed parts of structures caused by salt crystallization.

Kaynakça

  • Alves, R. A., Strecker, K., Pereira, R. B., & Panzera, T. H. (2020). Mixture design applied to the development of composites for steatite historical monuments restoration. Journal of Cultural Heritage, 45, 152-159.
  • Andreotti, S., Franzoni, E., Ruiz-Agudo, E., Scherer, G. W., Fabbri, P., Sassoni, E., & Rodriguez-Navarro, C. (2019). New polymer-based treatments for the prevention of damage by salt crystallization in stone. Materials and Structures, 52, 17.
  • Arumugam, H., Iqbal, M. M., Ahn, C.-H., Rimdusit, S., & Muthukaruppan, A. (2023). Development of high performance granite fine fly dust particle reinforced epoxy composites: structure, thermal, mechanical, surface and high voltage breakdown strength properties. Journal of Materials Research and Technology, 24, 2795-2811.
  • ASTM D570-98. (2005). Standard Test Method for Water Absorptionof Plastics. American Society for Testing Materials. West Conshohocken, PA.
  • Aydar, E., & Akkaş, E. (2022). The emission of natural harmful particulate matters by wind erosion and possible impact areas, Cappadocia province, Central Anatolia, Turkey. Bulletin of Engineering Geology and the Environment, 81, 20.
  • Benavente, D., Del Cura, M. G. A., Fort, R., & Ordóñez, S. (1999). Thermodynamic modelling of changes induced by salt pressure crystallisation in porous media of stone. Journal of Crystal Growth, 204(1-2), 168-178.
  • Benavente, D., Del Cura, M. G. A., Fort, R., & Ordóñez, S. (2004). Durability estimation of porous building stones from pore structure and strength. Engineering Geology, 74(1-2), 113-127.
  • Chen, Z., Liu, X., Chen, H., Li, J., Wang, X., & Zhu, J. (2023). Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 35(4), 109194.
  • Çiflikli, M. (2020). Hydrothermal alteration-related kaolinite/dickite occurrences in ignimbrites: an example from Miocene ignimbrite units in Avanos, Central Turkey. Arabian Journal of Geosciences, 13, 1044.
  • D'Arienzo, L., Scarfato, P., & Incarnato, L. (2008). New polymeric nanocomposites for improving the protective and consolidating efficiency of tuff stone. Journal of Cultural Heritage, 9(3), 253-260.
  • da Fonseca, B. S., Pinto, A. F., Rucha, M., Alves, M., & Montemor, M. (2023). Damaging effects of salt crystallization on a porous limestone after consolidation treatments. Construction and Building Materials, 374, 130967.
  • Dinçer, İ., & Bostancı, M. (2019). Capillary water absorption characteristics of some Cappadocian ignimbrites and the role of capillarity on their deterioration. Environmental Earth Sciences, 78, 7.
  • Erguler, Z. A. (2009). Field-based experimental determination of the weathering rates of the Cappadocian tuffs. Engineering Geology, 105(3-4), 186-199.
  • Garcia-Vallès, M., Topal, T., & Vendrell-Saz, M. (2003). Lichenic growth as a factor in the physical deterioration or protection of Cappadocian monuments. Environmental Geology, 43, 776-781.
  • Granneman, S. J., Lubelli, B., & van Hees, R. P. (2019). Mitigating salt damage in building materials by the use of crystallization modifiers–a review and outlook. Journal of Cultural Heritage, 40, 183-194.
  • Jia, M., He, L., Pan, A., Ma, X., Huang, S., & Simon, S. (2021). Silica-based hybrids for adhesive coatings and their anti-salt damage in the protection of ancient sandstone. Progress in Organic Coatings, 151, 106037.
  • Kaşmer, Ö., Ulusay, R., & Geniş, M. (2013). Assessments on the stability of natural slopes prone to toe erosion, and man-made historical semi-underground openings carved in soft tuffs at Zelve Open-Air Museum (Cappadocia, Turkey). Engineering Geology, 158, 135-158.
  • Korkanç, M. (2007). İgnimbiritlerin jeomekanik özelliklerinin yapı taşı olarak kullanımına etkisi: Nevşehir taşı. Jeoloji Mühendisliği Dergisi, 31(1), 49-60.
  • Korkanç, M., & Solak, B. (2016). Estimation of engineering properties of selected tuffs by using grain/matrix ratio. Journal of African Earth Sciences, 120, 160-172.
  • Luan, X. X., Xu, C. C., Wang, Z. S., & Ji, J. (2008). Preservation effect of modified waterborne epoxy resin emulsion for stone historical relic. Corrosion and Protection, 29(8), 451-453.
  • Lubelli, B., Hees, R. v., Groot, C., & Gunneweg, J. (2007). Risks of the Use of Water Repellents on Salt Contaminated Masonry: the Case of a Windmill in the Netherlands. Restoration of Buildings and Monuments, 13(5), 319-330.
  • Moon, V. G. (1993). Microstructural controls on the geomechanical behaviour of ignimbrite. Engineering Geology, 35(1-2), 19-31.
  • Moropoulou, A., Kouloumbi, N., Haralampopoulos, G., Konstanti, A., & Michailidis, P. (2003). Criteria and methodology for the evaluation of conservation interventions on treated porous stone susceptible to salt decay. Progress in Organic Coatings, 48(2-4), 259-270.
  • Özşen, H., Bozdağ, A., & İnce, İ. (2017). Effect of salt crystallization on weathering of pyroclastic rocks from Cappadocia, Turkey. Arabian Journal of Geosciences, 10, 258.
  • Pinna, D., Salvadori, B., & Porcinai, S. (2011). Evaluation of the application conditions of artificial protection treatments on salt-laden limestones and marble. Construction and Building Materials, 25(5), 2723-2732.
  • Raneri, S., Barone, G., Mazzoleni, P., & Rabot, E. (2016). Visualization and quantification of weathering effects on capillary water uptake of natural building stones by using neutron imaging. Applied Physics A, 122, 969.
  • Ruffolo, S. A., La Russa, M. F., Ricca, M., Belfiore, C. M., Macchia, A., Comite, V., Pezzino, A., & Crisci, G. M. (2017). New insights on the consolidation of salt weathered limestone: the case study of Modica stone. Bulletin of Engineering Geology and the Environment, 76, 11-20.
  • Sahu, R., Gupta, M. K., Chaturvedi, R., Tripaliya, S. S., & Pappu, A. (2020). Moisture resistant stones waste based polymer composites with enhanced dielectric constant and flexural strength. Composites Part B: Engineering, 182, 107656.
  • Scherer, G. W. (1999). Crystallization in pores. Cement and Concrete Research, 29(8), 1347-1358. Scherer, G. W., Flatt, R., & Wheeler, G. (2001). Materials science research for the conservation of sculpture and monuments. MRS Bulletin, 26(1), 44-50.
  • Topal, T., & Doyuran, V. (1997). Engineering geological properties and durability assessment of the Cappadocian tuff. Engineering Geology, 47(1-2), 175-187.
  • Topal, T., & Doyuran, V. (1998). Analyses of deterioration of the Cappadocian tuff, Turkey. Environmental Geology, 34, 5-20.
  • TS EN 1936. (2010). Türk Standartları, Doğal Taşlar Deney Metotları, Gerçek Yoğunluk, Görünür Yoğunluk, Toplam ve Açık Gözeneklilik. TSE, Ankara.
  • TS EN 12370. (2001). Doğal Taşlar-Deney metotları-Tuz kristalleşmesine direncin tayini. TSE, Ankara. Url1. (2024). Öz kapadokya doğal sarıtaş kimyasal özellikleri. https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.ozkapadokya.com.tr%2Fstorage%2Fapp%2Fmedia%2Fbelgeler%2Foz-kapadokya-saritas-analiz.docx&psig=AOvVaw2BudimwRVCxExTf9-xEcRL&ust=1727539155783000&source=images&cd=vfe&opi=89978449&ved=0CAQQn5wMahcKEwjIx4yCv-OIAxUAAAAAHQAAAAAQBA (Erişim tarihi:27.09.2024).
  • Url2. (2024). https://brtr-kimya-as.business.site/ (Erişim tarihi:27.09.2024).
  • Vacchiano, C. D., Incarnato, L., Scarfato, P., & Acierno, D. (2008). Conservation of tuff-stone with polymeric resins. Construction and Building Materials, 22(5), 855-865.
  • Walker, G. P. (1983). Ignimbrite types and ignimbrite problems. Journal of Volcanology and Geothermal Research, 17(1-4), 65-88.

İGNİMBİRİTLERE AİT FARKLI TANE BÜYÜKLÜĞÜNE SAHİP TAŞ TOZU VE EPOKSİ REÇİNE ESASLI KOMPOZİTLERİN TUZ ETKİSİNE BAĞLI HASARLARA KARŞI KORUMA POTANSİYELİNİN İNCELENMESİ

Yıl 2025, Cilt: 28 Sayı: 1, 169 - 178, 03.03.2025

Öz

Yapıların inşasında kullanılan taşlar nem oranı, tuz kristalleşmesi, iklimsel etkiler, hava kirliliği ve biyolojik faktörler gibi nedenlerden dolayı bozulmaya uğramaktadır. Tuz kristalleşmesi taşların bozulmasında en etkili faktörlerden birisidir. Taşlarda tuz kristalleşmesi yoluyla; çürümeler, çatlaklar ve aşınmalar gibi tahribatlara yol açmaktadır. Bu çalışmada, ignimbirit taş tozu (İTT) ve epoksi reçine (ER) esaslı kompozitlerin, yapı taşlarında tuz kristalleşmesi hasarlarına karşı onarımında kullanılması amaçlanmaktadır. Bu amaçla, Nevşehir ili ve çevresinden çıkarılan, yapıların inşaatında kullanılan ignimbiritlere ait farklı tane büyüklüğüne (63 μm, 150 μm, 250 μm, 500 μm, 1000 μm) sahip taş tozu ve matriks olarak epoksi reçine ile kompozitler hazırlanmıştır. Kompozitlerin tuz etkisine bağlı hasarlara karşı koruma potansiyelinin incelenmesi için; su emme, görünür yoğunluk, açık gözeneklilik ve tuz kristalleşmesi deneyleri yapılmıştır. Deney sonucuna göre, % 70 oranında <63 μm büyüklüğüne sahip İTT örneğinin, diğer örneklere göre tuz etkisine karşı daha dirençli olduğu belirlenmiştir. Bu kompozit, yapı taşlarının tuz etkisine karşı korunmasında etkili olduğundan, yapıların tuz kristalizasyonuyla oluşan çürümüş kısımlarının onarımı için harç enjeksiyon uygulamasıyla kullanılabileceği sonucuna varılmıştır.

Kaynakça

  • Alves, R. A., Strecker, K., Pereira, R. B., & Panzera, T. H. (2020). Mixture design applied to the development of composites for steatite historical monuments restoration. Journal of Cultural Heritage, 45, 152-159.
  • Andreotti, S., Franzoni, E., Ruiz-Agudo, E., Scherer, G. W., Fabbri, P., Sassoni, E., & Rodriguez-Navarro, C. (2019). New polymer-based treatments for the prevention of damage by salt crystallization in stone. Materials and Structures, 52, 17.
  • Arumugam, H., Iqbal, M. M., Ahn, C.-H., Rimdusit, S., & Muthukaruppan, A. (2023). Development of high performance granite fine fly dust particle reinforced epoxy composites: structure, thermal, mechanical, surface and high voltage breakdown strength properties. Journal of Materials Research and Technology, 24, 2795-2811.
  • ASTM D570-98. (2005). Standard Test Method for Water Absorptionof Plastics. American Society for Testing Materials. West Conshohocken, PA.
  • Aydar, E., & Akkaş, E. (2022). The emission of natural harmful particulate matters by wind erosion and possible impact areas, Cappadocia province, Central Anatolia, Turkey. Bulletin of Engineering Geology and the Environment, 81, 20.
  • Benavente, D., Del Cura, M. G. A., Fort, R., & Ordóñez, S. (1999). Thermodynamic modelling of changes induced by salt pressure crystallisation in porous media of stone. Journal of Crystal Growth, 204(1-2), 168-178.
  • Benavente, D., Del Cura, M. G. A., Fort, R., & Ordóñez, S. (2004). Durability estimation of porous building stones from pore structure and strength. Engineering Geology, 74(1-2), 113-127.
  • Chen, Z., Liu, X., Chen, H., Li, J., Wang, X., & Zhu, J. (2023). Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 35(4), 109194.
  • Çiflikli, M. (2020). Hydrothermal alteration-related kaolinite/dickite occurrences in ignimbrites: an example from Miocene ignimbrite units in Avanos, Central Turkey. Arabian Journal of Geosciences, 13, 1044.
  • D'Arienzo, L., Scarfato, P., & Incarnato, L. (2008). New polymeric nanocomposites for improving the protective and consolidating efficiency of tuff stone. Journal of Cultural Heritage, 9(3), 253-260.
  • da Fonseca, B. S., Pinto, A. F., Rucha, M., Alves, M., & Montemor, M. (2023). Damaging effects of salt crystallization on a porous limestone after consolidation treatments. Construction and Building Materials, 374, 130967.
  • Dinçer, İ., & Bostancı, M. (2019). Capillary water absorption characteristics of some Cappadocian ignimbrites and the role of capillarity on their deterioration. Environmental Earth Sciences, 78, 7.
  • Erguler, Z. A. (2009). Field-based experimental determination of the weathering rates of the Cappadocian tuffs. Engineering Geology, 105(3-4), 186-199.
  • Garcia-Vallès, M., Topal, T., & Vendrell-Saz, M. (2003). Lichenic growth as a factor in the physical deterioration or protection of Cappadocian monuments. Environmental Geology, 43, 776-781.
  • Granneman, S. J., Lubelli, B., & van Hees, R. P. (2019). Mitigating salt damage in building materials by the use of crystallization modifiers–a review and outlook. Journal of Cultural Heritage, 40, 183-194.
  • Jia, M., He, L., Pan, A., Ma, X., Huang, S., & Simon, S. (2021). Silica-based hybrids for adhesive coatings and their anti-salt damage in the protection of ancient sandstone. Progress in Organic Coatings, 151, 106037.
  • Kaşmer, Ö., Ulusay, R., & Geniş, M. (2013). Assessments on the stability of natural slopes prone to toe erosion, and man-made historical semi-underground openings carved in soft tuffs at Zelve Open-Air Museum (Cappadocia, Turkey). Engineering Geology, 158, 135-158.
  • Korkanç, M. (2007). İgnimbiritlerin jeomekanik özelliklerinin yapı taşı olarak kullanımına etkisi: Nevşehir taşı. Jeoloji Mühendisliği Dergisi, 31(1), 49-60.
  • Korkanç, M., & Solak, B. (2016). Estimation of engineering properties of selected tuffs by using grain/matrix ratio. Journal of African Earth Sciences, 120, 160-172.
  • Luan, X. X., Xu, C. C., Wang, Z. S., & Ji, J. (2008). Preservation effect of modified waterborne epoxy resin emulsion for stone historical relic. Corrosion and Protection, 29(8), 451-453.
  • Lubelli, B., Hees, R. v., Groot, C., & Gunneweg, J. (2007). Risks of the Use of Water Repellents on Salt Contaminated Masonry: the Case of a Windmill in the Netherlands. Restoration of Buildings and Monuments, 13(5), 319-330.
  • Moon, V. G. (1993). Microstructural controls on the geomechanical behaviour of ignimbrite. Engineering Geology, 35(1-2), 19-31.
  • Moropoulou, A., Kouloumbi, N., Haralampopoulos, G., Konstanti, A., & Michailidis, P. (2003). Criteria and methodology for the evaluation of conservation interventions on treated porous stone susceptible to salt decay. Progress in Organic Coatings, 48(2-4), 259-270.
  • Özşen, H., Bozdağ, A., & İnce, İ. (2017). Effect of salt crystallization on weathering of pyroclastic rocks from Cappadocia, Turkey. Arabian Journal of Geosciences, 10, 258.
  • Pinna, D., Salvadori, B., & Porcinai, S. (2011). Evaluation of the application conditions of artificial protection treatments on salt-laden limestones and marble. Construction and Building Materials, 25(5), 2723-2732.
  • Raneri, S., Barone, G., Mazzoleni, P., & Rabot, E. (2016). Visualization and quantification of weathering effects on capillary water uptake of natural building stones by using neutron imaging. Applied Physics A, 122, 969.
  • Ruffolo, S. A., La Russa, M. F., Ricca, M., Belfiore, C. M., Macchia, A., Comite, V., Pezzino, A., & Crisci, G. M. (2017). New insights on the consolidation of salt weathered limestone: the case study of Modica stone. Bulletin of Engineering Geology and the Environment, 76, 11-20.
  • Sahu, R., Gupta, M. K., Chaturvedi, R., Tripaliya, S. S., & Pappu, A. (2020). Moisture resistant stones waste based polymer composites with enhanced dielectric constant and flexural strength. Composites Part B: Engineering, 182, 107656.
  • Scherer, G. W. (1999). Crystallization in pores. Cement and Concrete Research, 29(8), 1347-1358. Scherer, G. W., Flatt, R., & Wheeler, G. (2001). Materials science research for the conservation of sculpture and monuments. MRS Bulletin, 26(1), 44-50.
  • Topal, T., & Doyuran, V. (1997). Engineering geological properties and durability assessment of the Cappadocian tuff. Engineering Geology, 47(1-2), 175-187.
  • Topal, T., & Doyuran, V. (1998). Analyses of deterioration of the Cappadocian tuff, Turkey. Environmental Geology, 34, 5-20.
  • TS EN 1936. (2010). Türk Standartları, Doğal Taşlar Deney Metotları, Gerçek Yoğunluk, Görünür Yoğunluk, Toplam ve Açık Gözeneklilik. TSE, Ankara.
  • TS EN 12370. (2001). Doğal Taşlar-Deney metotları-Tuz kristalleşmesine direncin tayini. TSE, Ankara. Url1. (2024). Öz kapadokya doğal sarıtaş kimyasal özellikleri. https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.ozkapadokya.com.tr%2Fstorage%2Fapp%2Fmedia%2Fbelgeler%2Foz-kapadokya-saritas-analiz.docx&psig=AOvVaw2BudimwRVCxExTf9-xEcRL&ust=1727539155783000&source=images&cd=vfe&opi=89978449&ved=0CAQQn5wMahcKEwjIx4yCv-OIAxUAAAAAHQAAAAAQBA (Erişim tarihi:27.09.2024).
  • Url2. (2024). https://brtr-kimya-as.business.site/ (Erişim tarihi:27.09.2024).
  • Vacchiano, C. D., Incarnato, L., Scarfato, P., & Acierno, D. (2008). Conservation of tuff-stone with polymeric resins. Construction and Building Materials, 22(5), 855-865.
  • Walker, G. P. (1983). Ignimbrite types and ignimbrite problems. Journal of Volcanology and Geothermal Research, 17(1-4), 65-88.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mimari Mühendislik, Yapı Malzemeleri
Bölüm İnşaat Mühendisliği
Yazarlar

Ahmet Cihat Arı 0000-0002-4690-8968

Yayımlanma Tarihi 3 Mart 2025
Gönderilme Tarihi 10 Ağustos 2024
Kabul Tarihi 3 Ekim 2024
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 1

Kaynak Göster

APA Arı, A. C. (2025). İGNİMBİRİTLERE AİT FARKLI TANE BÜYÜKLÜĞÜNE SAHİP TAŞ TOZU VE EPOKSİ REÇİNE ESASLI KOMPOZİTLERİN TUZ ETKİSİNE BAĞLI HASARLARA KARŞI KORUMA POTANSİYELİNİN İNCELENMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(1), 169-178.