Araştırma Makalesi
BibTex RIS Kaynak Göster

THERMAL CONDUCTIVITY BEHAVIOR OF ZEOLITE-BENTONITE MIXTURES

Yıl 2025, Cilt: 28 Sayı: 1, 258 - 265, 03.03.2025

Öz

It is known that the engineering behavior of clayey soils is quite important compared to other soil types. It was observed in studies that shear strength, compressibility and many other parameters are generally negatively affected with the increase in the amount of clay. However, in addition, as the clay percentage increases, permeability decreases and therefore clay, especially "bentonite", is frequently used as a buffer material. In areas such as solid waste or nuclear waste storage areas where the temperature increases and a buffer material is needed to ensure the sealing of the waste, the thermal behavior of the buffer material to be used in the presence of high temperatures is of great importance. Currently, only bentonite (due to its high sealing properties) or sand-bentonite (due to the use of the effect of sand and bentonite in reducing the shrinkage amount) is used as a buffer material. In this study, it is aimed to test the use of zeolite-bentonite mixtures in the presence of temperature and to popularize them if suitable results are obtained. Within the scope of the study, thermal conductivity measurements of zeolite-bentonite mixtures formed using different bentonite ratios were carried out at room temperature and high temperature (55°C). The experimental results revealed how the bentonite ratio and temperature changed the thermal properties of the mixtures.

Kaynakça

  • Akgün, H., Ada, M. & Koçkar, M.K. (2015). Performance assessment of a bentonite–sand mixture for nuclear waste isolation at the potential akkuyu nuclear waste disposal site, southern Turkey, Environ. Earth Sci. 73(10) 6101-6116.).
  • Alpaydın, Ş. G. (2019). An investigation of effects of boron additives on the permeability and shear strength behavior of sand-bentonite mixtures under high temperatures. Master thesis, Dokuz Eylül University, Supervisor: Yukselen Aksoy, Y., 161 p., 2019.
  • ASTM:D698-12. (2012). Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, West Conshohocken, PA, USA, 1–13.
  • Aşçı, C. (2023). Developing thermally conductive and resistive soil mixtures for energy geo-structures. Master thesis, Dokuz Eylül University, Supervisor: Yukselen Aksoy, Y., 208 p., 2023.
  • Baerlocher C., Meier W. H., Olson D. H., Atlas of Zeolite Framework Types, 6th Edition, Elsevier, 2007.
  • Cho, W. J., Lee, J. O., & Kang, C. H. (1999). Influence of salinity on the hydraulic conductivity of compacted bentonite. MRS Proceedings, 713.
  • Çirkin, İ., Yükselen Aksoy, Y. (2022). Pomza, Perlit ve Cam Elyaf Katkılarının Yüksek Sıcaklık Altında Kum-Kaolin Karışımlarının Kayma Dayanımı Davranışına Etkisi. DEUFMD, 24(71), 657-663.
  • DeVries D.A. (1963). Thermal Properties of Soils. In W.R. van Wijk (ed.) Physics of Plant Environment. North-Holland Publishing Company, Amsterdam.
  • Dixon, D.A., Gray, M.N., & Thomas, A.W. (1985). A study of the compaction properties of potential clay–sand mixtures for use in nuclear fuel waste. Engineering Geology, 21: 247–255.
  • Fleureau, J. M. (1979). Influence d’un champ thermique ou électrique sur les phénomènes d’interaction solide-liquide dans les milieux poreux, Doctoral thesis. Ecole Centrale de Paris.
  • Gray, H. (1936). Progress Report on Research on the Consolidation of Fine-Grained Soils. Proc. Internat. Conf. on Soil Mech. and Found. Eng., Harvard University, Vol. 2, p. 138-141.
  • Hanson, J.L., Yeşiller, N., & Oettle, N.K. (2010). Spatial and temporal Temperature distributions in municipal solid waste landfills. Journal of Environmental Engineering, 136(8), 804-814.
  • Laloui, L. (2001). Thermo-mechanical behavior of soils. Revue Française de Genie Civil., 5 (6), 809-843.
  • Nikolaev, I.V.; Leong, W.H.; Rosen, M.A. (2013). Experimental investigation of soil thermal conductivity over a wide temperature range. Int. J. Thermophys. 34, 1110–1129.
  • Paaswell, R. (1967). Temperature effects on clay soil consolidation. Journal of the Soil Mechanics and Foundations Division, 93, 9-22.
  • Pakbaz, M.C. and Khayat, N. (2004). The effect of sand on strength of mixtures of bentonite sand. Engineering Geological Methods: Modelling of soil and rock behaviour. Engineering Geology for Infrastructure Planning in Europe, 104: 316 - 320.
  • Pourhakkak, Pouran & Taghizadeh, Ali & Taghizadeh, Mohsen & Ghaedi, Mehrorang & Haghdoust, Sepahdar. (2021). Fundamentals of adsorption technology. 10.1016/B978-0-12-818805-7.00001-1.
  • Robinet, J. C., Rahbaoui, A., Plas, F. & Lebon, P. (1996). A constitutive thermomechanical model for saturated clays. Eng Geol. https://doi.org/10.1016/0013-7952(95)00049-6
  • Sellin, P. & Leupin, O. X. (2013). The use of clay as an engineered barrier in radioactive-waste management - A review. Clays and Clay Minerals, 61(6), 477– 498.
  • Shutterstock, 2024. https://www.shutterstock.com/tr/search/soil-compaction./ Accessed 16.09.2024.
  • Smith, M. J. et al. (1980). Engineered barrier development for a nuclear waste repository in basalt: an integration of current knowledge. In: RHO-BWI-ST-7, Rockwell Hanford Operations, WA.
  • Tchobanoglous, G., Theisen, H., & Vigil, S. A. (1993). Integrated solid waste management: Engineering principles and management issues, McGraw-Hill, New York.
  • Tien, Y. M., Chu, C. A., & Chuang, W. S. (2005). The prediction model of thermal conductivity of sand-bentonite based buffer material. France Clays in Natural & Engineered Barriers for Radioactive Waste Confinement, 657.
  • Yoon, S., Kim, M.J., Park, S., Kim. G.Y. (2021). Thermal conductivity prediction model for compacted bentonites considering temperature variations, Nucl. Eng. Technol. 53, 3359–3366.
  • Yoon, S., Lee, G., Park, T., Lee, C., Cho, D. (2022). Thermal conductivity evaluation for bentonite buffer materials under elevated temperature conditions, Case Studies in Thermal Engineering, Volume 30, 101792, ISSN 2214-157X, https://doi.org/10.1016/j.csite.2022.101792.
  • Xu, Y.S., Zeng, Z.T., Lv, H.B. (2019). Temperature dependence of apparent thermal conductivity of compacted bentonites as buffer material for high-level radioactive waste repository. Appl. Clay Sci. 174, 10–14.
  • Xu, Y., Zhou, X., Sun, D., Zeng, Z.T. (2022). Thermal properties of GMZ bentonite pellet mixtures subjected to different temperatures for high-level radioactive waste repository. Acta Geotech., 17, 981–992.
  • Ye, W.M., Chen, Y.G., Chen, B., Wang, Q., Wang, J. (2010). Advances on the knowledge of the buffer/backfill properties of heavily-compacted GMZ bentonite. Eng. Geol. 2010, 116, 12–20.
  • Youssef, M.S., Sabry, A. & El Ramli A.H. (1961). Temperature changes and their effects on some physical properties of soils. Proceedings of the Fifth International Conference on Soil Mechanics and Foundation Engineering 2 : 419-421, Paris.
  • Zendelska A., Golomeova M., Blažev K., Boev B., Krstev B., Golomeov B., A, Krstev. (2015). Kinetic studies of manganese removal from aqueous solution by adsorption on natural 46 Microporous and Mesoporous Materials zeolite. Macedonian Journal of Chemistry and Chemical Engineering, 34(1), 1857–5625.

ZEOLİT-BENTONİT KARIŞIMLARININ TERMAL İLETKENLİK DAVRANIŞI

Yıl 2025, Cilt: 28 Sayı: 1, 258 - 265, 03.03.2025

Öz

Killi zeminlerin mühendislik davranışlarının diğer zemin tiplerine göre oldukça önem taşıdığı bilinmektedir. Kil miktarının artması ile birlikte kayma dayanımı, sıkışabilirlik ve daha birçok parametrenin genel olarak olumsuz etkilendiği yapılan çalışmalarla görülmüştür. Ancak bunun yanında kil yüzdesi arttıkça geçirimliliğin azaldığı ve bu nedenle kilin, özellikle de “bentonitin” tampon malzeme olarak sıklıkla kullanıldığı bilinmektedir. Katı atık veya nükleer atık depolama alanları gibi sıcaklığın yükseldiği ve atıkların sızdırmazlığının sağlanması amacıyla bir tampon malzemeye ihtiyaç duyulan bu ve benzeri alanlarda kullanılacak tampon malzemenin, oluşan yüksek sıcaklık varlığında göstereceği termal davranış büyük önem arz etmektedir. Hali hazırda tampon malzeme olarak sadece bentonit (yüksek sızdırmazlık özelliği sebebi ile) ya da kum-bentonit (kumun, bentonitin büzülme miktarını azaltıcı etkisinden yararlanılması sebebi ile) kullanılmaktadır. Bu çalışmada, zeolit-bentonit karışımlarının kullanımının yüksek sıcaklık varlığında test edilerek ve kullanımına elverişli sonuçlar elde edilmesi halinde yaygınlaştırılması amaçlanmaktadır. Çalışma kapsamında, farklı bentonit oranları kullanılarak oluşturulan zeolit-bentonit karışımlarının oda sıcaklığı ve yüksek sıcaklık altında (55°C) termal iletkenlik ölçümleri gerçekleştirilmiştir. Deney sonuçları, bentonit oranının ve sıcaklığın karışımların termal özelliklerini nasıl değiştirdiğini ortaya koymuştur.

Kaynakça

  • Akgün, H., Ada, M. & Koçkar, M.K. (2015). Performance assessment of a bentonite–sand mixture for nuclear waste isolation at the potential akkuyu nuclear waste disposal site, southern Turkey, Environ. Earth Sci. 73(10) 6101-6116.).
  • Alpaydın, Ş. G. (2019). An investigation of effects of boron additives on the permeability and shear strength behavior of sand-bentonite mixtures under high temperatures. Master thesis, Dokuz Eylül University, Supervisor: Yukselen Aksoy, Y., 161 p., 2019.
  • ASTM:D698-12. (2012). Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, West Conshohocken, PA, USA, 1–13.
  • Aşçı, C. (2023). Developing thermally conductive and resistive soil mixtures for energy geo-structures. Master thesis, Dokuz Eylül University, Supervisor: Yukselen Aksoy, Y., 208 p., 2023.
  • Baerlocher C., Meier W. H., Olson D. H., Atlas of Zeolite Framework Types, 6th Edition, Elsevier, 2007.
  • Cho, W. J., Lee, J. O., & Kang, C. H. (1999). Influence of salinity on the hydraulic conductivity of compacted bentonite. MRS Proceedings, 713.
  • Çirkin, İ., Yükselen Aksoy, Y. (2022). Pomza, Perlit ve Cam Elyaf Katkılarının Yüksek Sıcaklık Altında Kum-Kaolin Karışımlarının Kayma Dayanımı Davranışına Etkisi. DEUFMD, 24(71), 657-663.
  • DeVries D.A. (1963). Thermal Properties of Soils. In W.R. van Wijk (ed.) Physics of Plant Environment. North-Holland Publishing Company, Amsterdam.
  • Dixon, D.A., Gray, M.N., & Thomas, A.W. (1985). A study of the compaction properties of potential clay–sand mixtures for use in nuclear fuel waste. Engineering Geology, 21: 247–255.
  • Fleureau, J. M. (1979). Influence d’un champ thermique ou électrique sur les phénomènes d’interaction solide-liquide dans les milieux poreux, Doctoral thesis. Ecole Centrale de Paris.
  • Gray, H. (1936). Progress Report on Research on the Consolidation of Fine-Grained Soils. Proc. Internat. Conf. on Soil Mech. and Found. Eng., Harvard University, Vol. 2, p. 138-141.
  • Hanson, J.L., Yeşiller, N., & Oettle, N.K. (2010). Spatial and temporal Temperature distributions in municipal solid waste landfills. Journal of Environmental Engineering, 136(8), 804-814.
  • Laloui, L. (2001). Thermo-mechanical behavior of soils. Revue Française de Genie Civil., 5 (6), 809-843.
  • Nikolaev, I.V.; Leong, W.H.; Rosen, M.A. (2013). Experimental investigation of soil thermal conductivity over a wide temperature range. Int. J. Thermophys. 34, 1110–1129.
  • Paaswell, R. (1967). Temperature effects on clay soil consolidation. Journal of the Soil Mechanics and Foundations Division, 93, 9-22.
  • Pakbaz, M.C. and Khayat, N. (2004). The effect of sand on strength of mixtures of bentonite sand. Engineering Geological Methods: Modelling of soil and rock behaviour. Engineering Geology for Infrastructure Planning in Europe, 104: 316 - 320.
  • Pourhakkak, Pouran & Taghizadeh, Ali & Taghizadeh, Mohsen & Ghaedi, Mehrorang & Haghdoust, Sepahdar. (2021). Fundamentals of adsorption technology. 10.1016/B978-0-12-818805-7.00001-1.
  • Robinet, J. C., Rahbaoui, A., Plas, F. & Lebon, P. (1996). A constitutive thermomechanical model for saturated clays. Eng Geol. https://doi.org/10.1016/0013-7952(95)00049-6
  • Sellin, P. & Leupin, O. X. (2013). The use of clay as an engineered barrier in radioactive-waste management - A review. Clays and Clay Minerals, 61(6), 477– 498.
  • Shutterstock, 2024. https://www.shutterstock.com/tr/search/soil-compaction./ Accessed 16.09.2024.
  • Smith, M. J. et al. (1980). Engineered barrier development for a nuclear waste repository in basalt: an integration of current knowledge. In: RHO-BWI-ST-7, Rockwell Hanford Operations, WA.
  • Tchobanoglous, G., Theisen, H., & Vigil, S. A. (1993). Integrated solid waste management: Engineering principles and management issues, McGraw-Hill, New York.
  • Tien, Y. M., Chu, C. A., & Chuang, W. S. (2005). The prediction model of thermal conductivity of sand-bentonite based buffer material. France Clays in Natural & Engineered Barriers for Radioactive Waste Confinement, 657.
  • Yoon, S., Kim, M.J., Park, S., Kim. G.Y. (2021). Thermal conductivity prediction model for compacted bentonites considering temperature variations, Nucl. Eng. Technol. 53, 3359–3366.
  • Yoon, S., Lee, G., Park, T., Lee, C., Cho, D. (2022). Thermal conductivity evaluation for bentonite buffer materials under elevated temperature conditions, Case Studies in Thermal Engineering, Volume 30, 101792, ISSN 2214-157X, https://doi.org/10.1016/j.csite.2022.101792.
  • Xu, Y.S., Zeng, Z.T., Lv, H.B. (2019). Temperature dependence of apparent thermal conductivity of compacted bentonites as buffer material for high-level radioactive waste repository. Appl. Clay Sci. 174, 10–14.
  • Xu, Y., Zhou, X., Sun, D., Zeng, Z.T. (2022). Thermal properties of GMZ bentonite pellet mixtures subjected to different temperatures for high-level radioactive waste repository. Acta Geotech., 17, 981–992.
  • Ye, W.M., Chen, Y.G., Chen, B., Wang, Q., Wang, J. (2010). Advances on the knowledge of the buffer/backfill properties of heavily-compacted GMZ bentonite. Eng. Geol. 2010, 116, 12–20.
  • Youssef, M.S., Sabry, A. & El Ramli A.H. (1961). Temperature changes and their effects on some physical properties of soils. Proceedings of the Fifth International Conference on Soil Mechanics and Foundation Engineering 2 : 419-421, Paris.
  • Zendelska A., Golomeova M., Blažev K., Boev B., Krstev B., Golomeov B., A, Krstev. (2015). Kinetic studies of manganese removal from aqueous solution by adsorption on natural 46 Microporous and Mesoporous Materials zeolite. Macedonian Journal of Chemistry and Chemical Engineering, 34(1), 1857–5625.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Geoteknik Mühendisliği
Bölüm İnşaat Mühendisliği
Yazarlar

Esra Güneri 0000-0002-1840-2118

Yayımlanma Tarihi 3 Mart 2025
Gönderilme Tarihi 16 Eylül 2024
Kabul Tarihi 27 Aralık 2024
Yayımlandığı Sayı Yıl 2025Cilt: 28 Sayı: 1

Kaynak Göster

APA Güneri, E. (2025). ZEOLİT-BENTONİT KARIŞIMLARININ TERMAL İLETKENLİK DAVRANIŞI. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 28(1), 258-265.